【題目】經過多年的運作,雙十一搶購活動已經演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018雙十一網購狂歡節(jié),某廠家擬投入適當?shù)膹V告費,對網上所售產品進行促銷.經調查測算,該促銷產品在雙十一的銷售量p萬件與促銷費用x萬元滿足(其中a為正常數(shù)).已知生產該產品還需投入成本萬元(不含促銷費用),每一件產品的銷售價格定為元,假定廠家的生產能力完全能滿足市場的銷售需求.

1)將該產品的利潤y萬元表示為促銷費用x萬元的函數(shù);

2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.

【答案】1);(2)當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;當時,促銷費用投入萬元,廠家的利潤最大,為萬元.

【解析】

1)根據產品的利潤銷售額產品的成本建立函數(shù)關系;

2)利用導數(shù)可求出該函數(shù)的最值.

1)由題意知,

代入化簡得:);

2

(。┊時,

①當時,,所以函數(shù)上單調遞增,

②當時,,所以函數(shù)上單調遞減,

從而促銷費用投入萬元時,廠家的利潤最大;

(ⅱ)當時,因為函數(shù)上單調遞增,

所以在上單調遞增,故當時,函數(shù)有最大值,

即促銷費用投入萬元時,廠家的利潤最大.

綜上,當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;

時,促銷費用投入萬元,廠家的利潤最大,為萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于無窮數(shù)列,,若,則稱收縮數(shù)列”.其中,,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項和為,數(shù)列收縮數(shù)列”.

1)若,求的前項和;

2)證明:收縮數(shù)列仍是

3)若,求所有滿足該條件的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, ADAC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為(

A.7B.12C.6D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是橢圓的左、右焦點,過且斜率不為零的直線與橢圓交于兩點,的周長為

1)求橢圓的方程

2)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1m2是“K數(shù)列”,求實數(shù)的取值范圍;

(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足

?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:

①在區(qū)間上單調遞減,②存在常數(shù)p,使其值域為,則稱函數(shù)是函數(shù)的“逼進函數(shù)”.

(1)判斷函數(shù)是不是函數(shù)的“逼進函數(shù)”;

(2)求證:函數(shù)不是函數(shù),的“逼進函數(shù)”

(3)若是函數(shù)的“逼進函數(shù)”,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調查,將計劃在今年購買5G手機的員工稱為追光族,計劃在明年及明年以后才購買5G手機的員工稱為觀望者調查結果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認為該公司員工屬于追光族性別有關;

屬于追光族

屬于觀望者

合計

女性員工

男性員工

合計

100

(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于追光族現(xiàn)從這6名中隨機抽取3名,求抽取到的3名中恰有1名屬于追光族的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內單調遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

同步練習冊答案