1.已知集合A={1,a,b},B={a,a2,ab},若A=B,求a+b的值.

分析 根據(jù)集合元素的互異性得到關于a的方程組$\left\{\begin{array}{l}{1={a}^{2}}\\{b=ab}\end{array}\right.$或$\left\{\begin{array}{l}{1=ab}\\{b={a}^{2}}\end{array}\right.$,通過解方程組求得a、b的值,則易求a+b的值.

解答 解:由題意得①組$\left\{\begin{array}{l}{1={a}^{2}}\\{b=ab}\end{array}\right.$或②$\left\{\begin{array}{l}{1=ab}\\{b={a}^{2}}\end{array}\right.$,
由①得a=±1,當a=1時,A={1,1,b},不符合,舍去;
當a=-1時,b=0,A={1,-1,0},B={-1,1,0},符合題意.
由②得a=1,舍去,
所以a+b=-1.

點評 本題考查了集合相等的應用,注意要驗證集合中元素的互異性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題正確的是( 。
A.若x≠kπ,k∈Z,則 sin2x+$\frac{2}{si{n}^{2}x}$≥2$\sqrt{2}$B.若a<0,則a+$\frac{4}{a}$≥-4
C.若a>0,b>0,則lga+lgb$≥2\sqrt{lga•lgb}$D.若a<0,b<0,則$\frac{a}+\frac{a}≥2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.雙曲線$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1上一點P到一個焦點的距離是10,那么點P到另一個焦點的距離是2或8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓C:(x-6)2+(y-8)2=1和兩點A(0,m),B(0,-m)(m>0),若圓C上存在點P,使得∠APB=90°,則m的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知定義在區(qū)間[-π,$\frac{2}{3}$π]上的函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}<φ<\frac{π}{2}$)的圖象關于直線x=-$\frac{π}{6}$對稱,當x∈$[-\frac{π}{6},\frac{2π}{3}]$時,f(x)的圖象如圖所示.
(1)求f(x)在$[-π,\frac{2}{3}π]$上的表達式;
(2)求方程f(x)=$\frac{{\sqrt{2}}}{2}$的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為(0,$\sqrt{3}$),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,離心率e=$\frac{1}{2}$,過橢圓右焦點F2的直線l與橢圓C交于M,N兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等差數(shù)列{an}中,a1=2,公差為d,則“d=4”是“a1,a2,a5成等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$的圖象表示曲線C,則以下命題中正確的有( 。
①若1<t<4,則曲線C為橢圓;
②若t>4或t<1,則曲線C為雙曲線;
③曲線C不可能是圓;
④若曲線C表示橢圓,且長軸在x軸上,則$1<t<\frac{5}{2}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.直線l:y=k(x-2)與雙曲線C:x2-y2=2的左右兩支各有一個交點,則k的取值范圍為(  )
A.k≤-1或k≥1B.-1≤k≤1C.-$\sqrt{2}$<k<$\sqrt{2}$D.-1<k<1

查看答案和解析>>

同步練習冊答案