若P(a,b)是雙曲線(xiàn)x2-4y2=m(m≠0)上一點(diǎn),且滿(mǎn)足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線(xiàn)( 。
分析:把點(diǎn)P的坐標(biāo)代入雙曲線(xiàn)方程,根據(jù)題設(shè)可求得m大于0,判斷出雙曲線(xiàn)的焦點(diǎn)在x軸上,進(jìn)而根據(jù)題設(shè)不等式可求得a>0,進(jìn)而可推斷出點(diǎn)P在右支上.
解答:解:∵P是雙曲線(xiàn)上的點(diǎn),代入雙曲線(xiàn)方程得
a2-4b2=(a-2b)(a+2b)=m
∵a-2b>0,a+2b>0,∴m>0
∴雙曲線(xiàn)的焦點(diǎn)在x軸上,
∵a-2b>0,a+2b>0,
∴2a>0,a>0
∴P點(diǎn)在y軸的右側(cè),只能在雙曲線(xiàn)的右支上.
故選A
點(diǎn)評(píng):本題主要考查了雙曲線(xiàn)的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)雙曲線(xiàn)方程和簡(jiǎn)單性質(zhì)的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線(xiàn)C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線(xiàn)為一條漸近線(xiàn)的方程是過(guò)雙曲線(xiàn)C的右焦點(diǎn)F2的一條弦交雙曲線(xiàn)右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).

   (1)求雙曲線(xiàn)C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線(xiàn)上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線(xiàn)段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線(xiàn)。

   (3)若在雙曲線(xiàn)右準(zhǔn)線(xiàn)L的左側(cè)能作出直線(xiàn)m:x=a,使點(diǎn)R在直線(xiàn)m上的射影S滿(mǎn)足,當(dāng)點(diǎn)P在曲線(xiàn)C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆陜西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)為坐標(biāo)原點(diǎn),,是雙曲線(xiàn)(a>0,b>0)的焦點(diǎn),若在雙曲

線(xiàn)上存在點(diǎn)P,滿(mǎn)足∠P=60°,∣OP∣=,則該雙曲線(xiàn)的漸近線(xiàn)方程為(    )

A.x±y=0            B.x±y=0

C. x±=0           D.±y=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( 。
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省襄樊四中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案