設(shè)等差數(shù)列{an}的前n項(xiàng)和為sn,已知a3=12,且s12>0,s13<0.
(1)求公差d的范圍;
(2)問前幾項(xiàng)和最大?并求最大值.
(1)依題意,有S12=12a1+
12×(12-1)
2
•d>0

S13=13a1+
13×(13-1)
2
•d<0

2a1+11d>0①
a1+6d<0②

由a3=12,得a1=12-2d③,
將③式分別代①、②式,得
24+7d>0
3+d<0

-
24
7
<d<-3.
(2)由d<0可知a1>a2>a3>…>a12>a13
因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,
則Sn就是S1,S2,…,S12中的最大值.
S12>0
S13<0
a1+5d>-
d
2
>0
a1+6d<0
a6>0
a7<0

故在S1,S2,…,S12中S6的值最大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}的通項(xiàng)公式為an=2n-19,當(dāng)Sn取到最小時(shí),n=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)等差數(shù)列{an}的前n項(xiàng)和為Sn,S30=12S10,S10+S30=130,則S20=( 。
A.40B.50C.60D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列{an}中,a2=4,公差d=2,則a1=______,S5=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩隊(duì)進(jìn)行某決賽,每次比賽一場(chǎng),采用七局四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)獲勝,比賽就此結(jié)束,因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為而
1
2
,據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽組織者可獲得門票收入40萬元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬元.
(I)若組織者在此次比賽中獲得的門票收入恰好為300萬元,問此次決賽共比賽了多少場(chǎng)?
(Ⅱ)求組織者在此次決賽中要獲得的門票收入不少于390萬元的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{an}為等差數(shù)列,且a3=5,a7=2a4-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(Ⅱ)若數(shù)列{bn}滿足b1+4b2+9b3+…+n2bn=an求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列{an}中,已知前n項(xiàng)和Sn=7n2-8n,則a100的值為( 。
A.1920B.1400C.1415D.1385

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等比數(shù)列{an}滿足a1+a4=18,a2a3=32,且公比q>1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求該數(shù)列的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列{an}的通項(xiàng)公式為an已知它的前n項(xiàng)和Sn=6,則項(xiàng)數(shù)n等于 

查看答案和解析>>

同步練習(xí)冊(cè)答案