曲線在矩陣的變換作用下得到曲線
(Ⅰ)求矩陣;
(Ⅱ)求矩陣的特征值及對(duì)應(yīng)的一個(gè)特征向量.

(Ⅰ)矩陣;(Ⅱ)矩陣的特征值.當(dāng)時(shí),對(duì)應(yīng)的特征向量為;當(dāng)時(shí),對(duì)應(yīng)的特征向量為

解析試題分析:(Ⅰ)首先設(shè)曲線上的任一點(diǎn)在矩陣對(duì)應(yīng)的變換作用下所得的點(diǎn)為,則由可得再由點(diǎn)在曲線上,把代入求得的值,即可得矩陣;(Ⅱ)由,可得矩陣的特征值,根據(jù)特征向量的求法,分別列出方程組,即可求得其對(duì)應(yīng)的特征向量.
試題解析:(Ⅰ)設(shè)曲線上的任一點(diǎn)在矩陣對(duì)應(yīng)的變換作用下所得的點(diǎn)為,則由點(diǎn)在曲線上,得再由,解得.3分
(Ⅱ)由,解得:. 5分
當(dāng)時(shí),由得對(duì)應(yīng)的特征向量為;當(dāng)時(shí),由得對(duì)應(yīng)的特征向量為.7分
考點(diǎn):1.矩陣與變換;2.矩陣的特征值及對(duì)應(yīng)的一個(gè)特征向量的計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與橢圓有公共焦點(diǎn),且橢圓過點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過點(diǎn)、、的圓為⊙,過點(diǎn)作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)、,試問直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn).(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時(shí)圓的方程;(4分)
(3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,以為圓心的圓相切于點(diǎn),的縱坐標(biāo)為,是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,圓,動(dòng)圓與已知兩圓都外切.
(1)求動(dòng)圓的圓心的軌跡的方程;
(2)直線與點(diǎn)的軌跡交于不同的兩點(diǎn)、,的中垂線與軸交于點(diǎn),求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案