已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意,.
(Ⅰ)分類討論得到單調(diào)性 (Ⅱ)構(gòu)造函數(shù)用導(dǎo)數(shù)的方法證明.
【解析】
試題分析:(Ⅰ) f(x)的定義域?yàn)?0,+),
當(dāng)a≥0時(shí),>0,故f(x)在(0,+)單調(diào)增加;
當(dāng)a≤-1時(shí),<0, 故f(x)在(0,+)單調(diào)減少;
當(dāng)-1<a<0時(shí),令=0,解得x=.當(dāng)x∈(0, )時(shí), >0;
x∈(,+)時(shí),<0, 故f(x)在(0, )單調(diào)增加,在(,+)單調(diào)減少
(Ⅱ)不妨設(shè)x1≥x2.由于a≤-2,故f(x)在(0,+)單調(diào)減少.
所以等價(jià)于≥4x1-4x2,
即f(x2)+ 4x2≥f(x1)+ 4x1.
令g(x)=f(x)+4x,則+4=.
于是≤=≤0.
從而g(x)在(0,+)單調(diào)減少,故g(x1) ≤g(x2),即 f(x1)+ 4x1≤f(x2)+ 4x2,
故對(duì)任意x1,x2∈(0,+) ,.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)的最值問題,考查分類討論思想,考查學(xué)生綜合運(yùn)用知識(shí)分析問題解決問題的能力,屬難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com