【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近年投入的年研發(fā)費用與年銷售量的數(shù)據(jù),得到散點圖如圖所示.

(1)利用散點圖判斷(其中均為大于的常數(shù))哪一個更適合作為年銷售量和年研發(fā)費用的回歸方程類型(只要給出判斷即可,不必說明理由)

(2)對數(shù)據(jù)作出如下處理,令,得到相關統(tǒng)計量的值如下表:根據(jù)第(1)問的判斷結果及表中數(shù)據(jù),求關于的回歸方程;

15

15

28.25

56.5

(3)已知企業(yè)年利潤(單位:千萬元)與的關系為(其中),根據(jù)第(2)問的結果判斷,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

【答案】(1) 選擇更合適;(2) . (3) 要使年利潤取最大值,預計下一年應投入千萬元的研發(fā)費用

【解析】

1)根據(jù)散點圖分布,可知更符合指數(shù)型模型,可得結果;(2)對兩邊取倒數(shù),得到,采用最小二乘法可求得,從而得到結果;(3)由(2)可得,利用導數(shù)可判斷出單調性,可知當時,取最大值,從而得到結果.

(1)由散點圖知,選擇更合適

2)對兩邊取對數(shù),得,即:

由表中數(shù)據(jù)得

,則,即

年銷售和年研發(fā)費用的回歸方程為:

3)由(2)知,,則

,得

時,;當時,

上單調遞增;在上單調遞減

千萬元時,年利潤取得最大值,且最大值為:千萬元億元

要使年利潤取最大值,預計下一年應投入千萬元的研發(fā)費用

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)上恒有意義,求的取值范圍;

2)是否存在實數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域為的奇函數(shù),滿足,若________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的“8”字形曲線是由兩個關于x軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是x2+y24y40,雙曲線的左、右頂點A、B是該圓與x軸的交點,雙曲線與半圓相交于與x軸平行的直徑的兩端點.

1)試求雙曲線的標準方程;

2)記雙曲線的左、右焦點為F1F2,試在“8”字形曲線上求點P,使得∠F1PF2是直角.

3)過點A作直線l分別交“8”字形曲線中上、下兩個半圓于點M、N,求|MN|的最大長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤的是()

A. 一條直線與兩個平行平面中的一個相交, 則必與另一個平面相交

B. 平行于同一平面的兩個不同平面平行

C. 若直線不平行平面, 則在平面內不存在與平行的直線

D. 如果平面不垂直平面, 那么平面內一定不存在直線垂直于平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,MPC中點.求證:

(1)PA∥平面MDB;

(2)PDBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求上的最值;

2)設集合,若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是______.

①若直線與直線互相垂直,則

②若,兩點到直線的距離分別是,,則滿足條件的直線共有3

③過,兩點的所有直線方程可表示為

④經(jīng)過點且在軸和軸上截距都相等的直線方程為

查看答案和解析>>

同步練習冊答案