【題目】設(shè)命題p:對任意的 ,sinx≤ax+b≤tanx恒成立,其中a,b∈R.
(1)若a=1,b=0,求證:命題p為真命題.
(2)若命題p為真命題,求a,b的所有值.
【答案】
(1)證明:若a=1,b=0,則命題p:對任意的 ,sinx≤x≤tanx恒成立,
如圖由三角函數(shù)線的定義可知,
sinx=MP,cosx=OM,x= ,
tanx=AT.
∵ 時(shí)
S△AOP= |OA||MP|= sinx,
S扇形AOP= |OA|= x,
S△AOT= |OA||AT|= tanx,
且S△AOP<S扇形AOP<SAOT.
∴ sinx< x< tanx
即sinx<x<tanx
(2)證明:若命題p為真命題,則當(dāng)x=0時(shí),sin0≤b≤tan0,所以b=0,
此時(shí)sinx≤ax≤tanx恒成立,
若a<1,令f(x)=ax﹣sinx, ,
則f′(x)=a﹣cosx=0在 時(shí)有唯一解,記為x0,
當(dāng)x∈[0,x0)時(shí),f′(x)<0,
此時(shí)f(x)≤f(0)=0恒成立,即ax≤sinx,矛盾,舍去;
若a>1,令h(x)=ax﹣tanx, ,
則h′(x)=a﹣ =0在 時(shí)有唯一解,記為x1,
當(dāng)x∈[0,x1)時(shí),h′(x)>0,
此時(shí)h(x)≥h(0)=0恒成立,即ax≥tanx,矛盾,舍去;
故a=1,b=0.
【解析】(1)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為圓心畫一個(gè)單位圓,與x軸正半軸交于點(diǎn)A,在第一象限內(nèi)的圓周上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線,垂足為M,過點(diǎn)A作x軸的垂線,交射線OP于點(diǎn)T,根據(jù)三角函數(shù)線可知sinx=MP,tanx=AT,那么SAOP=sinx,S扇形AOP=x,SAOT=tanx,通過比較SAOP、S扇形AOP、SAOT即可;(2)當(dāng)x=0時(shí),b=0,;根據(jù)a分類討論:當(dāng)a1時(shí)構(gòu)造函數(shù)f(x)=ax-sinx,當(dāng)a1時(shí)構(gòu)造函數(shù)f(x)=ax-tanx,利用導(dǎo)數(shù)分別討論兩個(gè)函數(shù)的單調(diào)性.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[( )t+1 , ( )t]時(shí),求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池ABCD及其矩形附屬設(shè)施EFGH,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點(diǎn)C,D,G,H在圓周上,E,F(xiàn)在邊CD上,且 ,設(shè)∠BOC=θ.
(1)記游泳池及其附屬設(shè)施的占地面積為f(θ),求f(θ)的表達(dá)式;
(2)怎樣設(shè)計(jì)才能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC,點(diǎn)M為棱A1B1的中點(diǎn).
求證:
(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=2,點(diǎn)列Pn(n=1,2,…)在△ABC內(nèi)部,且△PnAB與△PnAC的面積比為2:1,若對n∈N*都存在數(shù)列{bn}滿足 ,則a4的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:m∈R,使 是冪函數(shù),且在(0,+∞)上單調(diào)遞減;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是( )
A.p∧(q)
B.(p)∧q
C.p∧q
D.(p)∨q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知(2x﹣ )5(Ⅰ)求展開式中含 項(xiàng)的系數(shù)
(Ⅱ)設(shè)(2x﹣ )5的展開式中前三項(xiàng)的二項(xiàng)式系數(shù)之和為M,(1+ax)6的展開式中各項(xiàng)系數(shù)之和為N,若4M=N,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項(xiàng)等比數(shù)列{an}中的a1 , a4031是函數(shù)f(x)= x3﹣4x2+6x﹣3的極值點(diǎn),則 =( )
A.1
B.2
C.
D.﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com