【題目】華東師大二附中樂東黃流中學(xué)位于我國南海邊,有一片美麗的沙灘和一彎天然的海濱浴場.如圖,海岸線MAN,,(海岸線MAN上方是大海),現(xiàn)用長為BC的欄網(wǎng)圍成一個三角形學(xué)生游泳場所,其中.
(1)若,求三角形游泳場所面積最大值;
(2)若BC=600,,由于學(xué)生人數(shù)的增加需要擴大游泳場所面積,現(xiàn)在折線MBCN上方選點D,現(xiàn)用長為BD,DC的欄圍成一個四邊形游泳場所DBAC,使,求四邊形游泳場所DBAC的最大面積.
【答案】(1);(2)
【解析】
(1)設(shè)AB為,AC為,根據(jù),結(jié)合余弦定理及基本不等式可得的范圍,代入三角形面積公式,可得三角形游泳場所面積最大值;
(2)由(1)可得三角形ABC的面積,若四邊形養(yǎng)殖場DBAC的最大面積,則△DBC面積最大即可,根據(jù)橢圓的定義及幾何特征,D為以BC為焦點的橢圓的短軸頂點時滿足條件.
(1)設(shè)
所以△ABC面積的最大值為,當(dāng)且僅當(dāng)時取到。
(2)由(1),
由(定值),
由知點D在以B.C為焦點的橢圓上,
為定值。
只需面積最大,需此時點D到BC的距離最大,即D必為橢圓短軸頂點,
此時,面積的最大值為,
因此四邊形DBAC面積的最大值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線:與曲線,分別交于點,(且點,均異于原點),當(dāng)時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、、、(),都在函數(shù)(,)的圖像上;
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;
(2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點,求證:在直線上;
(3)設(shè),(),過點、的直線與兩坐標(biāo)軸圍成的三角形面積為,問:數(shù)列是否存在最大項?若存在,求出最大項的值,若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻,公司還獲得了相應(yīng)的廣告效益.據(jù)測算,首日參與活動人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設(shè)此項活動的啟動資金為萬元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).
(1)求活動開始后第天的捐步人數(shù),及前天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域,,,在邊的中點處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.
(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時,求的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(自轉(zhuǎn)到,再回到,稱“一個來回”,忽略在及處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點,且,求點在“一個來回”中被照到的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)的“微信健步走”活動情況,現(xiàn)用分層抽樣的方法從中抽取老、中、青三個年齡段人員進行問卷調(diào)查.已知抽取的樣本同時滿足以下三個條件:
(i)老年人的人數(shù)多于中年人的人數(shù);
(ii)中年人的人數(shù)多于青年人的人數(shù);
(iii)青年人的人數(shù)的兩倍多于老年人的人數(shù).
①若青年人的人數(shù)為4,則中年人的人數(shù)的最大值為___________.
②抽取的總?cè)藬?shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,P是橢圓上位于第一象限內(nèi)的點,軸,垂足為Q,,,的面積為.
(1)求橢圓F的方程:
(2)若M是橢圓上的動點,求的最大值,并求出取得最大值時M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com