【題目】如圖,在四棱錐中, , ,且 , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

【答案】I)證明見解析;(

【解析】試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直進(jìn)行論證,而線面垂直證明,往往需要多次利用線線垂直與線面垂直的轉(zhuǎn)化,而線線垂直,有時(shí)可利用平幾條件進(jìn)行尋找與論證,如本題取中點(diǎn)E,利用平幾知識(shí)得到四邊形是矩形,從而得到,而易得,因此,進(jìn)而有平面平面;(2)利用空間向量求線面角,首先建立空間直角坐標(biāo)系:以A 為原點(diǎn), , ,建立空間直角坐標(biāo)角系,設(shè)出各點(diǎn)坐標(biāo),利用方程組解出面的法向量,利用向量數(shù)量積求夾角,最后根據(jù)線面角與向量夾角互余得結(jié)論

試題解析:解:證明:(1中點(diǎn), , ,四邊形是矩形, ,平面,,在平面, 平面平面,平面平面,平面平面.

2)以A 為原點(diǎn), , ,建立空間直角坐標(biāo)角系,

,

設(shè)平面的法向量,,,,

設(shè)直線與平面所成的角為, ,

直線與平面所成的角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有相同的5個(gè)白球和4個(gè)黑球,從中任意摸出3個(gè),求下列事件發(fā)生的概率.

1)摸出的全是白球或全是黑球、

2)摸出的白球個(gè)數(shù)多于黑球個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求的值;

(2)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的,.當(dāng)時(shí),問是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說明理由.

(3)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱直線與曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知?jiǎng)狱c(diǎn)M與到點(diǎn)N(3,0)的距離比動(dòng)點(diǎn)M到直線x=-2的距離大1,記動(dòng)圓M的軌跡為曲線C.

(1)求曲線C的方程;

(2)若直線l與曲線C相交于A,B:兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),證明直線l經(jīng)過定點(diǎn)H,并求出H點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大時(shí),__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知棱長為3的正方體ABCDA1B1C1D1中,MBC的中點(diǎn),點(diǎn)P是側(cè)面DCC1D1內(nèi)(包括邊界)的一個(gè)動(dòng)點(diǎn),且滿足∠APD=∠MPC.則當(dāng)三棱錐PBCD的體積最大時(shí),三棱錐PBCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某消費(fèi)品企業(yè)銷售部對(duì)去年各銷售地的居民年收入(即此地所有居民在一年內(nèi)的收入的總和)及其產(chǎn)品銷售額進(jìn)行抽樣分析,收集數(shù)據(jù)整理如下:

銷售地

A

B

C

D

年收入x(億元)

15

20

35

50

銷售額y(萬元)

16

20

40

48

1)在圖a中作出這些數(shù)據(jù)的散點(diǎn)圖,并指出yx成正相關(guān)還是負(fù)相關(guān)?

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程?

3)若B地今年的居民年收入將增長20%,預(yù)測B地今年的銷售額將達(dá)到多少萬元?

回歸方程系數(shù)公式:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校夏令營有3名男同學(xué)3名女同學(xué),其年級(jí)情況如下表:


一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽(每人被選到的可能性相同)

用表中字母列舉出所有可能的結(jié)果

設(shè)為事件選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué),求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案