已知p:
1
4
2x
1
2
,q:x+
1
x
∈[-
5
2
,-2]
,則p是q的( 。
分析:首先對(duì)p,q兩個(gè)命題進(jìn)行整理,得到關(guān)于x的范圍,把兩個(gè)條件對(duì)應(yīng)的范圍進(jìn)行比較,得到前者的范圍小于后者的范圍,即屬于前者一定屬于后者,但是屬于后者不一定屬于前者,得到結(jié)論.
解答:解:∵
1
4
2x
1
2
?2-2≤2x≤2-1?-2≤x≤-1,
-
5
2
≤x+
1
x
≤-2
?-2≤x≤-
1
2
,
∴條件p:-2≤x≤-1,條件q:-2≤x≤-
1
2
,
∴屬于前者一定屬于后者,但是屬于后者不一定屬于前者,
∴前者是后者的充分不必要條件,
故選B.
點(diǎn)評(píng):本題考查必要條件,充分條件與充要條件的判斷,本題解題的關(guān)鍵是對(duì)于所給的條件進(jìn)行整理,得到兩個(gè)條件對(duì)應(yīng)的集合的范圍的大小,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:
1
4
2
x
 
1
2
,命題q:x+
1
x
∈[-
5
2
,-2]
,則下列說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:不等式x2+2x+m>0的解集為R;q:指數(shù)函數(shù)f(x)=(m+
1
4
)x
為增函數(shù),則p是q成立的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:指數(shù)函數(shù)f(x)=(m+
1
4
)x
為增函數(shù);q:不等式x2+2x+m>0的解集為R,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知p:
1
4
2x
1
2
,q:x+
1
x
∈[-
5
2
,-2]
,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案