(本小題滿分13分)已知函數(x>0)在x = 1處
取得極值–3–c,其中a,b,c為常數。
(1)試確定a,b的值;
(2)討論函數f(x)的單調區(qū)間;
(3)若對任意x>0,不等式恒成立,求c的取值范圍。
解:(I)由題意知,因此,從而.
又對求導得.
由題意,因此,解得.
(II)由(I)知(),令,解得.
當時,,此時為減函數;
當時,,此時為增函數.
因此的單調遞減區(qū)間為,而的單調遞增區(qū)間為.
(III)由(II)知,在處取得極小值,此極小值也是最小值,
要使()恒成立,只需.
即,從而,解得或.
所以的取值范圍為.
解:(I)由題意知,因此,從而.
又對求導得.
由題意,因此,解得.
(II)由(I)知(),令,解得.
當時,,此時為減函數;
當時,,此時為增函數.
因此的單調遞減區(qū)間為,而的單調遞增區(qū)間為.
(III)由(II)知,在處取得極小值,此極小值也是最小值,
要使()恒成立,只需.
即,從而,解得或.
所以的取值范圍為.
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數是奇函數.
(1)求的值;(2)判斷函數的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數,數列{}的首項.
(1) 求函數的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數列的前項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com