精英家教網 > 高中數學 > 題目詳情
已知角α的終邊過點A(-2,4),求下列各式的值.
(1)2sin2α-sinαcosα-cos2α;
(2)tan2α.
考點:同角三角函數基本關系的運用,任意角的三角函數的定義
專題:三角函數的求值
分析:(1)由條件得tanα=-2,利用2sin2α-sinαcosα-cos2α=
2sin2α-sinαcosα-cos2α
sin2α+cos2α
=
2tan2α-tanα-1
tan2α+1
即可求得答案;
(2)利用二倍角的正切即可求得答案.
解答: 解:(1)由條件得tanα=
4
-2
=-2,
所以2sin2α-sinαcosα-cos2α=
2sin2α-sinαcosα-cos2α
sin2α+cos2α
=
2tan2α-tanα-1
tan2α+1
=
2×(-2)2-(-2)-1
(-2)2+1
=
9
5
;
(2)tan2α=
2tanα
1-tan2α
=
2×(-2)
1-(-2)2
=
4
3
點評:本題考查任意角的三角函數的定義,考查同角三角函數基本關系的運用,切化弦是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知PA是圓O的切線,切點為A,PA=2,AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑為( 。
A、
21
B、2
3
C、
21
2
D、
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右頂點分別為A,B,點P是雙曲線C上不同于頂點的任意一點,若直線PA、PB的斜率之積為
1
2

(Ⅰ)求雙曲線C的離心率e;
(Ⅱ)若過點P作斜率為k(k≠±
b
a
)的直線l,使得l與雙曲線C有且僅有一個公共點,記直線PF1,PF2的斜率分別為k1,k2,問是否存在實數λ使得
1
k1
+
1
k2
=λk.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=(x+1)2+2ln
1
x

(1)求f(x)的單調區(qū)間;
(2)若關于x的方程f(x)=x2+x+a+1在區(qū)間[1,3]上恰好有兩個相異的實數根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

9粒種子分別種在甲、乙、丙3個坑內,每坑3粒,每粒種子發(fā)芽的概率為0.5.若一個坑內至少有1粒種子發(fā)芽,則這個坑不需要補種,否則這個坑需要補種種子.
(1)求甲坑不需要補種的概率;
(2)記3個坑中恰好有1個坑不需要補種的概率為P1,另記有坑需要補種的概率為P2,求P1+P2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當a=3時,求函數f(x)的極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C的頂點在坐標原點,以坐標軸為對稱軸,且焦點F(2,0).
(1)求拋物線C的標準方程;
(2)直線l過焦點F與拋物線C相交與M,N兩點,且|MN|=16,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:kx-y+1+2k=0,求原點O到直線l距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,△ABC為直角三角形,BD⊥AC,證明:
AB•BC
AC
=BD.

查看答案和解析>>

同步練習冊答案