在等差數(shù)列{an}中,a1+a2+a3=3,a28+a29+a30=165,則此數(shù)列前30項(xiàng)和等于(  )
A、810B、840
C、870D、900
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:在等差數(shù)列{an}中,由a1+a2+a3=3,a28+a29+a30=165,知a1+a30=56,再由S30=15(a1+a30),能求出此數(shù)列前30項(xiàng)和.
解答: 解:在等差數(shù)列{an}中,
∵a1+a2+a3=3,a28+a29+a30=165,
∴3(a1+a30)=168,
∴a1+a30=56,
∴此數(shù)列前30項(xiàng)和為S30=15(a1+a30)=15×56=840.
故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)公式和通項(xiàng)公式,考查等差數(shù)列的性質(zhì),是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△AOB中,已知∠AOB=60°,OA=2,OB=5,在線段OB上任取一點(diǎn)C,求△AOC為銳角三角形的概率為(  )
A、0.6B、0.4
C、0.2D、0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011是等差數(shù)列:1,4,7,10…的第( 。╉(xiàng).
A、669B、670
C、671D、672

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=2px(p>0)有一個(gè)共同的焦點(diǎn)F,點(diǎn)M是雙曲線與拋物線的一個(gè)交點(diǎn),若|MF|=
5
4
p,則此雙曲線的離心率等于(  )
A、2
B、3
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c.若B=2A,a=1,b=
2
,則這樣的三角形有(  )
A、只有一個(gè)B、有兩個(gè)
C、不存在D、無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某隨機(jī)變量X的分布如下(p,q∈R)
X 1 -1
P p q
且X的數(shù)學(xué)期望E(X)=
1
2
,那么X的方差D(X)等于(  )
A、
3
2
B、
3
4
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)i3的值是( 。
A、-iB、1C、-1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)y=log2(x2+2x-3)有意義,q:1<2x<4,r:(x-m+1)(x-m-1)<0
(Ⅰ)若p且q是真命題,求x的取值范圍;
(Ⅱ)若p是r的必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從參加環(huán)保知識(shí)競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示,觀察圖形,回答下列問題:
(1)79.5~89.5這一組的頻率、頻數(shù)分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競賽的及格率(60分及以上為及格)
(3)從60名學(xué)生中抽取4名,再從中抽2名,求恰好有1名是及格的概率.

查看答案和解析>>

同步練習(xí)冊答案