【題目】已知正三棱錐P﹣ABC,點P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( 。
A.
B.
C.
D.
【答案】C
【解析】∵正三棱錐P﹣ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接球O,
∵球O的半徑為 ,
∴正方體的邊長為2,即PA=PB=PC=2,
球心到截面ABC的距離即正方體中心到截面ABC的距離,
設(shè)P到截面ABC的距離為h,則正三棱錐P﹣ABC的體積V=S△ABC×h=S△PAB×PC=××2×2×2= ,
△ABC為邊長為2的正三角形,S△ABC=×(2)2=2 ,
∴h= ,
∴球心(即正方體中心)O到截面ABC的距離為-= .
故選:C.
利用正三棱錐的特點,將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,然后利用等體積法可實現(xiàn)此計算.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點Pn(an,bn)滿足an+1=an·bn+l ,bn+l =(nN*)且點P1的坐標為(1,-1).
(1)求過點P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點Pn都在(1)中的直線l上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x3+sinx+2x的定義域為R,數(shù)列{an}是公差為d的等差數(shù)列,且a1+a2+a3+a4+…a2015<0,記m=f(a1)+f(a2)+f(a3)+…f(a2015),關(guān)于實數(shù)m,下列說法正確的是( 。
A.m恒為負數(shù)
B.m恒為正數(shù)
C.當d>0時,m恒為正數(shù);當d<0時,m恒為負數(shù)
D.當d>0時,m恒為負數(shù);當d<0時,m恒為正數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( 。
A. B. C. D. 不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在內(nèi)存在兩個極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C對應(yīng)邊分別為a、b、c.
(1)若a=14,b=40,cosB=,求cosC;
(2)若a=3,b=,B=2A,求c的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com