7.設(shè)x∈R,若函數(shù)f(x)為單調(diào)遞增函數(shù),且對任意實(shí)數(shù)x,都有f[f(x)-ex]=e+1(e是自然對數(shù)的底數(shù)),則方程f(x)-x-2=0的解的個數(shù)為( 。﹤.
A.1B.0C.3D.2

分析 利用換元法 將函數(shù)轉(zhuǎn)化為f(t)=e+1,根據(jù)函數(shù)的對應(yīng)關(guān)系求出t的值,即可求出函數(shù)f(x)的表達(dá)式,即可得到結(jié)論.

解答 解:設(shè)t=f(x)-ex,
則f(x)=ex+t,則條件等價(jià)為f(t)=e+1,
令x=t,則f(t)=et+t=e+1,
∵函數(shù)f(x)為單調(diào)遞增函數(shù),
∴函數(shù)為一對一函數(shù),解得t=1,
∴f(x)=ex+1,
故f(x)-x-2=0,即ex+1-x-2=0,解得:x=0,
故選:A.

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,利用換元法求出函數(shù)的解析式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)A為圓(x-2)2+(y-2)2=2上一動點(diǎn),則A到直線x-y-4=0的最大距離為$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=lnx-a2x2+ax(a∈R)在區(qū)間(1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ為參數(shù))的普通方程是2x+y-2=0,x∈[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將邊長為2的正方形ABCD沿對角線BD折起,則三棱錐C-ABD的外接球表面積為( 。
A.B.12πC.16πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計(jì)分,規(guī)定滿意度不低于98分,則評價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,如圖莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉);
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來估計(jì)整個班級的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評價(jià)該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{cosA}{cosB}$=$\frac{a}$=$\sqrt{3}$.
(1)求C;
(2)如圖,設(shè)半徑為R的圓O過A,B,C三點(diǎn),點(diǎn)P位于劣弧$\widehat{AC}$上,∠PAB=θ,求四邊形APCB面積S(θ)的解析式及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:a1=1且an+1+$\frac{1}{{1+{a_n}}}$=0(n∈N*),則a2018=( 。
A.2$B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù),又在[0,1]上是增函數(shù)的是( 。
A.y=|x|B.y=x2+1C.y=x3D.y=sinx(x∈[0,$\frac{π}{2}$])

查看答案和解析>>

同步練習(xí)冊答案