A. | $\frac{3}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{3\sqrt{2}}{4}$ |
分析 構造思想,再利用基本不等式的性質(zhì)即可得出.
解答 解:由題意x>0,y>0,
x•$\sqrt{1+{y}^{2}}$=$\sqrt{{x}^{2}(1+{y}^{2})}=\sqrt{{x}^{2}•2(\frac{1}{2}+\frac{{y}^{2}}{2})}$=$\sqrt{2}•\sqrt{{x}^{2}(\frac{1}{2}+\frac{{y}^{2}}{2})}$$≤\sqrt{2}×\frac{{x}^{2}+\frac{1}{2}+\frac{{y}^{2}}{2}}{2}$,
∵x2+$\frac{{y}^{2}}{2}$=1,
∴x•$\sqrt{1+{y}^{2}}$$≤\sqrt{2}×\frac{{x}^{2}+\frac{1}{2}+\frac{{y}^{2}}{2}}{2}$=$\sqrt{2}×\frac{3}{4}=\frac{3\sqrt{2}}{4}$
故x•$\sqrt{1+{y}^{2}}$的最大值為$\frac{3\sqrt{2}}{4}$.
故選D.
點評 本題考查了構造思想,湊出已知條件以及基本不等式的性質(zhì).屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ω≥1 | B. | ω≤-1 | C. | -1≤ω<0 | D. | 0<ω≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {1,3} | C. | {3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com