【題目】已知定義在上的函數(shù)滿足,當(dāng)時(shí),則關(guān)于函數(shù)有如下四個(gè)結(jié)論:①為偶函數(shù);②的圖象關(guān)于直線對(duì)稱;③方程有兩個(gè)不等實(shí)根;④其中所有正確結(jié)論的編號(hào)是_______.
【答案】①②
【解析】
由題意判斷是周期函數(shù),且為偶函數(shù),由此判斷所給的命題是否正確即可.
對(duì)于①,由題意知,所以是周期為2的函數(shù);
當(dāng)時(shí),,
所以為偶函數(shù),①正確;
對(duì)于②,是偶函數(shù),對(duì)稱軸是,又是周期為2的函數(shù),
所以的圖象關(guān)于直線對(duì)稱,②正確;
對(duì)于③,方程化為,
設(shè),則方程化為;
由函數(shù)和的圖象知,圖象沒(méi)有交點(diǎn),方程無(wú)實(shí)數(shù)根,③錯(cuò)誤;
對(duì)于④,是周期為2的函數(shù),且為偶函數(shù),在上是單調(diào)遞減函數(shù);
所以;
又,所以,
即,所以④錯(cuò)誤.
綜上知,正確的命題序號(hào)是①②.
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著運(yùn)動(dòng)app和手環(huán)的普及和應(yīng)用,在朋友圈、運(yùn)動(dòng)圈中出現(xiàn)了每天1萬(wàn)步的健身打卡現(xiàn)象,“日行一萬(wàn)步,健康一輩子”的觀念廣泛流傳.“健步達(dá)人”小王某天統(tǒng)計(jì)了他朋友圈中所有好友(共500人)的走路步數(shù),并整理成下表:
分組(單位:千步) | ||||||||
頻數(shù) | 60 | 240 | 100 | 60 | 20 | 18 | 0 | 2 |
(1)請(qǐng)估算這一天小王朋友圈中好友走路步數(shù)的平均數(shù)(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)值作代表);
(2)若用表示事件“走路步數(shù)低于平均步數(shù)”,試估計(jì)事件發(fā)生的概率;
(3)若稱每天走路不少于8千步的人為“健步達(dá)人”,小王朋友圈中歲數(shù)在40歲以上的中老年人共有300人,其中健步達(dá)人恰有150人,請(qǐng)?zhí)顚?xiě)下面列聯(lián)表.根據(jù)列聯(lián)表判斷,有多大把握認(rèn)為,健步達(dá)人與年齡有關(guān)?
健步達(dá)人 | 非健步達(dá)人 | 合計(jì) | |
40歲以上 | |||
不超過(guò)40歲 | |||
合計(jì) |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若,使得,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xOy中,橢圓(a>b>0)的短軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)斜率為1且經(jīng)過(guò)橢圓的右焦點(diǎn)的直線交橢圓于P1、P2兩點(diǎn),P是橢圓上任意一點(diǎn),若(λ,μ∈R),證明:λ2+μ2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程有實(shí)數(shù)根,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí)是否存在不動(dòng)點(diǎn)?并證明你的結(jié)論;
(2)若,求證有唯一不動(dòng)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線和曲線的直角坐標(biāo)方程;
(2)過(guò)動(dòng)點(diǎn)且平行于的直線交曲線于兩點(diǎn),若,求動(dòng)點(diǎn)到直線的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)我國(guó)人口均衡發(fā)展,從2016年1月1日起,全國(guó)統(tǒng)一實(shí)施全面放開(kāi)二孩政策,這也是為了重建大國(guó)人口觀,重新認(rèn)識(shí)人口價(jià)值、人口規(guī)律、人口問(wèn)題,某研究機(jī)構(gòu)為了了解人們對(duì)全面放開(kāi)生育二孩政策的態(tài)度,隨機(jī)調(diào)查了200人,得到的統(tǒng)計(jì)數(shù)據(jù)如下面的不完整的2×2列聯(lián)表所示(單位:人):
支持生育二孩 | 不支持生育二孩 | 合計(jì) | |
男性 | 30 | ||
女性 | 60 | 100 | |
合計(jì) | 70 |
(1)完成2×2列聯(lián)表,并求是否有90%的把握認(rèn)為是否“支持生育二孩”與性別有關(guān)?
(2)現(xiàn)從樣本中的女性中利用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)選出2人進(jìn)行深層次的交流,求選出的2人中至少有1人“支持生育二孩”的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績(jī)優(yōu)秀是否對(duì)選擇物理有影響,對(duì)該校2018級(jí)的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計(jì) | |
數(shù)學(xué)成績(jī)優(yōu)秀 | |||
數(shù)學(xué)成績(jī)不優(yōu)秀 | 260 | ||
總計(jì) | 600 | 1000 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校冬季長(zhǎng)跑活動(dòng)中,學(xué)校要給獲得一、二等獎(jiǎng)的學(xué)生購(gòu)買獎(jiǎng)品,要求花費(fèi)總額不得超過(guò)元.已知一等獎(jiǎng)和二等獎(jiǎng)獎(jiǎng)品的單價(jià)分別為元、元,一等獎(jiǎng)人數(shù)與二等獎(jiǎng)人數(shù)的比值不得高于,且獲得一等獎(jiǎng)的人數(shù)不能少于人,那么下列說(shuō)法中錯(cuò)誤的是( )
A.最多可以購(gòu)買份一等獎(jiǎng)獎(jiǎng)品
B.最多可以購(gòu)買份二等獎(jiǎng)獎(jiǎng)品
C.購(gòu)買獎(jiǎng)品至少要花費(fèi)元
D.共有種不同的購(gòu)買獎(jiǎng)品方案
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com