【題目】已知數(shù)列{an}滿足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

【答案】
(1)解:令n=1,﹣2a2+3=0,a2=

令n=2,﹣ a3 +4=0,a3= ,

令n=3,﹣ a4 +4=0,a4=


(2)解:猜想an= (n∈N*).

證明:當(dāng)n=1時(shí),a1=1= ,所以an= 成立,

假設(shè)當(dāng)n=k時(shí),an= 成立,即ak= ,

則(ak﹣3)ak+1﹣ak+4=0,即( ﹣3)ak+1 +4=0,

所以 ak+1= ,即ak+1= = ,

所以當(dāng)n=k+1時(shí),結(jié)論an= 成立.

綜上,對(duì)任意的n∈N*,an= 成立


【解析】(1)由數(shù)列{an}的遞推公式依次求出a2 , a3 , a4;(2)根據(jù)a2 , a3 , a4值的結(jié)構(gòu)特點(diǎn)猜想{an}的通項(xiàng)公式,再用數(shù)學(xué)歸納法①驗(yàn)證n=1成立,②假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的定義和表示和數(shù)學(xué)歸納法的定義,需要了解數(shù)列中的每個(gè)數(shù)都叫這個(gè)數(shù)列的項(xiàng).記作an,在數(shù)列第一個(gè)位置的項(xiàng)叫第1項(xiàng)(或首項(xiàng)),在第二個(gè)位置的叫第2項(xiàng),……,序號(hào)為n的項(xiàng)叫第n項(xiàng)(也叫通項(xiàng))記作an數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=2an+1(n∈N*),Sn為其前n項(xiàng)和,則S5的值為(
A.57
B.61
C.62
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心到它對(duì)稱軸的最近距離為
(1)求ω的值及f(x)的對(duì)稱軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2 =1(a>0.b>0)有公共焦點(diǎn)F,且在第一象限的交點(diǎn)為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過(guò)點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點(diǎn)分別為G、H,探究直線GH是否過(guò)定點(diǎn),若GH過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是方程 的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?/span>.

1)當(dāng)時(shí),求函數(shù)的最值;

(2)試判斷函數(shù)在區(qū)間的單調(diào)性;

(3)設(shè)試證明:對(duì)于,.

(參考公式: ,當(dāng)且僅當(dāng)時(shí)等號(hào)成立)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某休閑廣場(chǎng)中央有一個(gè)半徑為1(百米)的圓形花壇,現(xiàn)計(jì)劃在該花壇內(nèi)建造一條六邊形觀光步道,圍出一個(gè)由兩個(gè)全等的等腰梯形(梯形ABCF和梯形DEFC)構(gòu)成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設(shè)∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關(guān)于θ的函數(shù)f(θ);
(2)當(dāng)θ為何值時(shí),可使得六邊形區(qū)域面積達(dá)到最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:

時(shí)間

第4天

第32天

第60天

第90天

價(jià)格(千元)

23

30

22

7

(Ⅰ)寫(xiě)出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天,x∈N*);
(Ⅱ)銷售量g(x)與時(shí)間x的函數(shù)關(guān)系式為 ,則該產(chǎn)品投放市場(chǎng)第幾天的銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?營(yíng)運(yùn)成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 的展開(kāi)式各項(xiàng)系數(shù)和為M, 的展開(kāi)式各項(xiàng)系數(shù)和為N,(x+1)n的展開(kāi)式各項(xiàng)的系數(shù)和為P,且M+N﹣P=2016,試求 的展開(kāi)式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對(duì)值最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案