如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點(diǎn).
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.

證明見(jiàn)解析.

解析試題分析:(1)取PA的中點(diǎn)E,連結(jié)EM、BE,根據(jù)三角形的中位線定理證出ME∥AD且ME=AD,平行四邊形中Q是BC的中點(diǎn),可得BQ∥AD且BQ=AD,因此四邊形MQBE是平行四邊形,可得MQ∥BE,再結(jié)合線面平行的判定定理可得MQ∥平面PAB;
(2)由PA⊥平面ABCD,可得PA⊥CD,結(jié)合AC⊥CD可得CD⊥平面PAC,從而有AN⊥CD.又因?yàn)锳N⊥PC,結(jié)合PC、CD是平面PCD內(nèi)的相交直線,可得AN⊥平面PCD,從而得到AN⊥PD.等腰△PAD中利用“三線合一”,證出AM⊥PD,結(jié)合AM、AN是平面AMN內(nèi)的相交直線,得到PD⊥平面AMN,從而得到MN⊥PD.
(1)取PA的中點(diǎn)E,連結(jié)EM、BE,
∵M(jìn)是PD的中點(diǎn),∴ME∥AD且ME=AD,
又∵Q是BC中點(diǎn),∴BQ=BC,
∵四邊形ABCD是平行四邊形,
∴BC∥AD且BC=AD,可得BQ∥ME且BQ=ME,
∴四邊形MQBE是平行四邊形,可得MQ∥BE, (4分)
∵BE?平面PAB,MQ?平面PAB,
∴MQ∥平面PAB; (6分)

(2)∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD,
又∵AC⊥CD,PA、AC是平面PAC內(nèi)的相交直線,
∴CD⊥平面PAC,結(jié)合AN?平面PAC,得AN⊥CD.   (9分)
又∵AN⊥PC,PC、CD是平面PCD內(nèi)的相交直線,
∴AN⊥平面PCD,結(jié)合PD?平面PCD,可得AN⊥PD, (12分)
∵PA=AD,M是PD的中點(diǎn),∴AM⊥PD, (13分)
又∵AM、AN是平面AMN內(nèi)的相交直線,∴PD⊥平面AMN,
∵M(jìn)N?平面AMN,∴MN⊥PD. (14分)
考點(diǎn):直線與平面平行的判定;空間中直線與直線之間的位置關(guān)系;直線與平面垂直的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,ABCD是邊長(zhǎng)為2的正方形,,ED=1,//BD,且.
(1)求證:BF//平面ACE;
(2)求證:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是線段PB的中點(diǎn).

(1)求證:平面PAC;
(2)求證:AQ//平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013·遼寧高考)如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:平面PAC⊥平面PBC.
(2)設(shè)Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•浙江)如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點(diǎn).
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若G是PC的中點(diǎn),求DG與PAC所成的角的正切值;
(Ⅲ)若G滿足PC⊥面BGD,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,,,為正三角形,且平面平面

(1)證明:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面,分別為,中點(diǎn),
(Ⅰ)求證:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD與四邊形都為正方形,,F(xiàn)
為線段的中點(diǎn),E為線段BC上的動(dòng)點(diǎn).

(1)當(dāng)E為線段BC中點(diǎn)時(shí),求證:平面AEF;
(2)求證:平面AEF平面;
(3)設(shè),寫(xiě)出為何值時(shí)MF⊥平面AEF(結(jié)論不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案