已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有( )
A.60條
B.66條
C.72條
D.78條
【答案】分析:由題意可求r=10,從而可求出x2+y2=100上的整點個數(shù),共12個點,由題意可知直線 =1(a,b為非零實數(shù))與x,y軸不平行,不經(jīng)過原點,求出所有的直線的條數(shù),去掉不滿足題意的直線的條數(shù)即可.
解答:解:∵圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線x=-10相切,
∴r=10,
∴圓C的方程為:x2+y2=100.
∴圓x2+y2=100上的整點為(0,±10),(±6,±8),(±8,±6),(±10,0),共12個點,
∵直線=1(a,b為非零實數(shù)),
∴直線與x,y軸不平行,不經(jīng)過原點,
①過每個整點都有一條圓的切線,共12條,不符合要求的4條,分別是過與坐標軸的交點的切線;
②又任意兩點連線有條,
過圓上兩整點與x,y軸平行的有8條(x=±6,±8,y=±6,±8),暫不包括x軸與y軸;
經(jīng)過原點的有6條(包括x軸與y軸),
綜①②知,符合條件的直線共有+(12-4)-8-6=60.
故選A.
點評:本題考查直線與圓的綜合運用,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化,恰當?shù)亟柚鷶?shù)形結(jié)合進行求解,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習冊答案