【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費(fèi)總支出的比重.國際上常用恩格爾系數(shù)來衡量一個(gè)國家和地區(qū)人民生活水平的狀況.聯(lián)合國對消費(fèi)水平的規(guī)定標(biāo)準(zhǔn)如下表:

家庭類型

貧窮

溫飽

小康

富裕

最富裕

實(shí)施精準(zhǔn)扶貧以來,根據(jù)對某山區(qū)貧困家庭消費(fèi)支出情況(單位:萬元)的抽樣調(diào)查,2018年每個(gè)家庭平均消費(fèi)支出總額為2萬元,其中食物消費(fèi)支出為1.2萬元預(yù)測2018年到2020年每個(gè)家庭平均消費(fèi)支出總額每年的增長率約是30%,而食物消費(fèi)支出平均每年增加0.2萬元,預(yù)測該山區(qū)的家庭2020年將處于( )

A.貧困水平B.溫飽水平C.小康水平D.富裕水平

【答案】C

【解析】

分別求出2020年每個(gè)家庭平均消費(fèi)支出,和每個(gè)家庭食物支出,然后求恩格爾系數(shù).

2020年每個(gè)家庭平均消費(fèi)支出總額為萬元,

2020年每個(gè)家庭食物消費(fèi)支出為萬元,

2020年恩格爾系數(shù)

,

所以該山區(qū)的家庭2020年將處于小康水平.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角ABC的對邊分別為a,b,c,若acos2ccos2b.

(1)求證:ab,c成等差數(shù)列;

(2)B60°,b4,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:

(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;

(2)請根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.

1)求數(shù)列的通項(xiàng)公式;

2)若,數(shù)列的前項(xiàng)和為,若不等式對一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足如下條件:

①函數(shù)的最小值為,最大值為9

;

③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2

試探究并解決如下問題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數(shù)的圖象的對稱軸方程;

(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率都為50%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員四次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個(gè)隨機(jī)數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989

據(jù)此估計(jì),該運(yùn)動員四次投籃恰有兩次命中的概率為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點(diǎn)A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點(diǎn)A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,曲線,且的焦點(diǎn)之間的距離為,在第一象限的交點(diǎn)為

(1)求曲線的方程和點(diǎn)的坐標(biāo);

(2)若過點(diǎn)且斜率為的直線的另一個(gè)交點(diǎn)為,過點(diǎn)垂直的直線與的另一個(gè)交點(diǎn)為設(shè),試求取值范圍

查看答案和解析>>

同步練習(xí)冊答案