解:(1)設(shè)所求方程的斜率為k,
由直線l的方程3x+y-5=0的斜率為-3,
得到k=
,又直線過(guò)(1,1),
則所求直線的方程為:y-1=
(x-1),即x-3y+2=0;
(2)設(shè)直線l上的點(diǎn)Q坐標(biāo)為(a,5-3a),
所以Q到直線x-y-1=0的距離d=
=
,
化簡(jiǎn)得:|2a-3|=1,即2a-3=1或2a-3=-1,
解得:a=2或a=1,
則Q點(diǎn)的坐標(biāo)為(2,-1)或(1,2).
分析:(1)根據(jù)兩直線垂直時(shí)斜率的乘積為-1,由直線l方程的斜率求出所求直線的斜率,由直線過(guò)P,利用點(diǎn)與斜率寫出直線的方程即可;
(2)由Q為直線l上的點(diǎn),設(shè)出Q的坐標(biāo),利用點(diǎn)到直線的距離公式列出方程,求出方程的解即可確定出Q的坐標(biāo).
點(diǎn)評(píng):此題考查了直線的一般式方程,兩直線垂直時(shí)斜率滿足的關(guān)系以及點(diǎn)到直線距離公式.要求學(xué)生掌握點(diǎn)到直線的距離公式,理解兩直線垂直時(shí)斜率滿足的關(guān)系,會(huì)根據(jù)一點(diǎn)和斜率寫出直線的方程.