若AB為拋物線y2=2px(p>0)的動(dòng)弦,且|AB|=a(a>2p),則AB的中點(diǎn)M到y(tǒng)軸的最近距離是( 。
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2
設(shè)A(x1,y1),B(x2,y2),
拋物線準(zhǔn)線為x=-
p
2

如圖所示:
則所求距離為MN=
x1+x2
2
=
(x1+
p
2
)+(x2+
p
2
)
2
-
p
2
=
|AF|+|BF|
2
-
p
2
|AB|
2
-
p
2
=
a
2
-
p
2
,
所以AB的中點(diǎn)M到y(tǒng)軸的最近距離是
a-p
2
,此時(shí)弦AB過焦點(diǎn)F.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)(1,1)是橢圓
x2
4
+
y2
2
=1
某條弦的中點(diǎn),則此弦所在的直線方程為:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別是F1、F2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1;
(Ⅰ)求橢圓C的方程.
(Ⅱ)若A,B,C是橢圓上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn),當(dāng)點(diǎn)B是橢圓C的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.
(Ⅲ)設(shè)點(diǎn)p是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1、PF2,設(shè)∠F1PF2的角平分線PM交橢圓C的長軸于點(diǎn)M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:x2-y2=1,l:y=kx+1
(1)求直線L的斜率的取值范圍,使L與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在,若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過C作斜率為k的直線l交橢圓于D,E兩點(diǎn),若
S△CBD
S△CAE
=
1
6
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(備用題)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn)M(1,
3
2
)
到它的兩焦點(diǎn)F1、F2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,右焦點(diǎn)為(2
2
,0).斜率為1的直線l與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).
(Ⅰ)求橢圓G的方程;
(Ⅱ)求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( )
A.B.2 C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊(cè)答案