【題目】某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為200.根據(jù)一般標準,高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:
(1)求體重在[60,65)內(nèi)的頻率,并補全頻率分布直方圖;
(2)用分層抽樣的方法從偏胖的學生中抽取6人對日常生活習慣及體育鍛煉進行調(diào)查,則各組應分別抽取多少人?
(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).
【答案】(1)(2) 三段人數(shù)分別為3,2,1 (3)
【解析】
試題(1)利用頻率分布直方圖的性質(zhì)能求出求出體重在[60,65)內(nèi)的頻率,由此能補全的頻率分布直方圖;(2)設(shè)男生總?cè)藬?shù)為n,由,可得n=1000,從而體重超過65kg的總?cè)藬?shù)300,由此能求出各組應分別抽取的人數(shù);(3)利用頻率分布直方圖能估計高二男生的體重的中位數(shù)與平均數(shù)
試題解析:(1)體重在內(nèi)的頻率
補全的頻率分布直方圖如圖所示.
(2)設(shè)男生總?cè)藬?shù)為,
由,可得
體重超過的總?cè)藬?shù)為
在的人數(shù)為,應抽取的人數(shù)為,
在的人數(shù)為,應抽取的人數(shù)為,
在的人數(shù)為,應抽取的人數(shù)為.
所以在,,三段人數(shù)分別為3,2,1.
(3)中位數(shù)為60kg,平均數(shù)為
(kg)
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱(側(cè)棱垂直于底面)中,,,,.
(1)證明:平面;
(2)若是的中點,在線段上是否存在一點使平面?若存在,請確定點的位置;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出v的值為( )
A.210﹣1
B.210
C.310﹣1
D.310
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)各項都是正數(shù)的等比數(shù)列{},Sn為前n項和,且S10=10,S30=70,那么S40=______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”系列進行市場銷售量調(diào)研,通過對該品牌的系列一個階段的調(diào)研得知,發(fā)現(xiàn)系列每日的銷售量(單位:千克)與銷售價格(元/千克)近似滿足關(guān)系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出系列15千克.
(1)求函數(shù)的解析式;
(2)若系列的成本為4元/千克,試確定銷售價格的值,使該商場每日銷售系列所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在研究學習中,收集到某制藥廠今年5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(萬盒) | 5 | 5 | 6 | 6 | 8 |
若線性相關(guān),線性回歸方程為,則以下為真命題的是( )
A. 每增加1個單位長度,則一定增加0.7個單位長度
B. 每增加1個單位長度,則必減少0.7個單位長度
C. 當時,的預測值為8.1萬盒
D. 線性回歸直線經(jīng)過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:
分組(重量) | ||||
頻數(shù)(個) | 5 | 10 | 20 | 15 |
(1) 根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;
(2) 用分層抽樣的方法從重量在和的蘋果中共抽取4個,其中重量在的有幾個?
(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在和中各有1個的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點,AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com