已知橢圓C的離心率,且它的焦點(diǎn)與雙曲線x2-2y2=4的焦點(diǎn)重合,則橢圓C的方程為    
【答案】分析:先將雙曲線方程化簡(jiǎn)為標(biāo)準(zhǔn)形式,求出其焦點(diǎn)坐標(biāo),再由橢圓C的焦點(diǎn)與雙曲線x2-2y2=4的焦點(diǎn)重合,可得到c的值,結(jié)合橢圓C的離心率,可得到a的值,進(jìn)而可得到答案.
解答:解:雙曲線x2-2y2=4整理可得
∴焦點(diǎn)坐標(biāo)為(-,0),(,0)
∵橢圓C的焦點(diǎn)與雙曲線x2-2y2=4的焦點(diǎn)重合
∴c=
∵橢圓C的離心率,∴∴a=2
∴b=
∴橢圓C的方程為:
故答案為:
點(diǎn)評(píng):本題主要考查橢圓的標(biāo)準(zhǔn)方程.考查基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率e=
3
2
,長(zhǎng)軸的左右兩個(gè)端點(diǎn)分別為A1(-2,0),A2(2,0);
(1)求橢圓C的方程;
(2)點(diǎn)M在該橢圓上,且
MF1
MF2
=0,求點(diǎn)M到y(tǒng)軸的距離;
(3)過點(diǎn)(1,0)且斜率為1的直線與橢圓交于P,Q兩點(diǎn),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率e=
3
2
,長(zhǎng)軸的左右端點(diǎn)分別為A1(-2,0),A2(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線x=my+1與橢圓C交于P,Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S,試問:當(dāng)m變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條直線方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率e=
3
2
,且它的焦點(diǎn)與雙曲線x2-2y2=4的焦點(diǎn)重合,則橢圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率為e=
6
3
,一條準(zhǔn)線方程為x=
3
2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P滿足:
OP
=
OM
+
ON
,其中M,N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
1
3
,問:是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C的離心率為
3
2
,A、B、F分別為橢圓的右頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn),且S△ABF=1-
3
2

(1)求橢圓C的方程;
(2)已知直線l:y=kx+m被圓O:x2+y2=4所截弦長(zhǎng)為2
3
,若直線l與橢圓C交于M、N兩點(diǎn).求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案