【題目】已知雙曲線的離心率為,過其右焦點作斜率為的直線,交雙曲線的兩條漸近線于兩點(點在軸上方),則( )

A.B.C.D.

【答案】B

【解析】

由雙曲線的離心率可得ab,求得雙曲線的漸近線方程,設右焦點為(c,0),過其右焦點F作斜率為2的直線方程為y2xc),聯(lián)立漸近線方程,求得B,C的坐標,再由向量共線定理,可得所求比值.

由雙曲線的離心率為,可得ca,

即有ab,雙曲線的漸近線方程為y=±x

設右焦點為(c,0),過其右焦點F作斜率為2的直線方程為y2xc),

yxy2xc),可得B2c2c),

y=﹣xy2xc)可得C),

λ,即有02cλ0),

解得λ3,即則3

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產某種零件,每個零件的成本為100元,出廠單價定為160元,該廠為了鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂一個,所訂購的全部零件的出廠單價就降低0.05元,但出廠單價不能低于130.

1)某零售商若一次訂購該零件300個,求該零售商所訂購零件的出廠單價;

2)若某零售商一次訂購x個(xN*),零件的實際出廠單價為y元,試求yfx)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調性;

(2)當時,恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,點在橢圓上.

)求橢圓的標準方程.

)是否存在斜率為的直線,使得當直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當時,設,求證:曲線存在兩條斜率為且不重合的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,,是拋物線上的兩點,是坐標原點,且.

(1)若,求的面積;

(2)設是線段上一點,若的面積相等,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某片森林原來面積為a,計劃每年砍伐的森林面積是上一年年末森林面積的p%,當砍伐到原來面積的一半時,所用時間是10年,已知到2018年年末,森林剩余面積為原來面積的,為保護生態(tài)環(huán)境,森林面積至少要保留原來面積的.

1)求每年砍伐面積的百分比P%;

2)到2018年年末,該森林已砍伐了多少年?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,準線為上一點,直線與拋物線交于兩點,若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.不過原點的直線與橢圓相交于兩點,設直線,直線,直線的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案