已知拋物線與過點(diǎn)的直線相交于兩點(diǎn),為原點(diǎn).若的斜率之和為1,(1)求直線的方程; (2)求的面積.

 

【答案】

(1);(2).

【解析】(1)設(shè)直線l的方程為y=kx-1,然后直線方程與拋物線方程聯(lián)立,消去y或x轉(zhuǎn)化為二次方程后,再根據(jù)韋達(dá)定理和的斜率之和為1,建立關(guān)于k的方程,確定k的值.

(2)再(1)的基礎(chǔ)上,利用,可求出的面積.

解:(1)顯然直線的斜率必存在,設(shè)直線的方程為,

,                                             ………………2分

,                      

                                         ………………5分

 ,解得

所以直線的方程為                                       ………………8分

(2)解法1:

  ,                                    ……………10分

                                                       ……………12分

                                        …………14分

解法2:

                 ……………10分

h=                                                            ……………12分

                                             ……………14分  

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
3
2
,且過P(
6
,
2
2
).
(1)求橢圓E的方程;
(2)已知直線l過點(diǎn)M(-
1
2
,0),且與開口朝上,頂點(diǎn)在原點(diǎn)的拋物線C切于第二象限的一點(diǎn)N,直  線l與橢圓E交于A,B兩點(diǎn),與y軸交與D點(diǎn),若
AB
=λ
AN
,
BD
BN
,且λ+μ=
5
2
,求拋物線C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省教育考試院高考測試樣卷(理) 題型:解答題

   已知拋物線C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點(diǎn)P, 使得過點(diǎn)P的直

線交C于另一點(diǎn)Q, 滿足PF⊥QF, 且PQ與C

在點(diǎn)P處的切線垂直? 若存在, 求出點(diǎn)P的坐標(biāo);

若不存在, 請說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)K(-1,0)的直l與C相交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為D。 (1)證明:點(diǎn)F在直線BD上;
(2)設(shè)=,求△BDK的內(nèi)切圓M的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年河南省南陽一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

橢圓E:=1(a>b>0)離心率為,且過P(,).
(1)求橢圓E的方程;
(2)已知直線l過點(diǎn)M(-,0),且與開口朝上,頂點(diǎn)在原點(diǎn)的拋物線C切于第二象限的一點(diǎn)N,直  線l與橢圓E交于A,B兩點(diǎn),與y軸交與D點(diǎn),若=,,且λ+μ=,求拋物線C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年河南省南陽一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

橢圓E:=1(a>b>0)離心率為,且過P(,).
(1)求橢圓E的方程;
(2)已知直線l過點(diǎn)M(-,0),且與開口朝上,頂點(diǎn)在原點(diǎn)的拋物線C切于第二象限的一點(diǎn)N,直  線l與橢圓E交于A,B兩點(diǎn),與y軸交與D點(diǎn),若=,,且λ+μ=,求拋物線C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案