11.已知cos($\frac{5π}{12}$-θ)=$\frac{1}{3}$,則sin($\frac{π}{12}$+θ)的值是(  )
A.-$\frac{1}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

分析 由已知利用誘導(dǎo)公式化簡所求即可得解.

解答 解:∵cos($\frac{5π}{12}$-θ)=$\frac{1}{3}$,
∴sin($\frac{π}{12}$+θ)=cos[$\frac{π}{2}$-($\frac{π}{12}$+θ)]=cos($\frac{5π}{12}$-θ)=$\frac{1}{3}$.
故選:C.

點評 本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^{-2}}{,_{\;}}_{\;}x<0\\ lnx{,_{\;}}_{\;}x>0\end{array}\right.$若f(a)=2,則實數(shù)a=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=x2+bx+c(b,c∈R),若對任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,則b的取值范圍是(  )
A.[0,2]B.(0,2]C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax2-3a2x+1(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間、極大值和極小值.
(Ⅱ)若x∈[a+1,a+2]時,恒有f′(x)>-3a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點 A(-4,0),B(4,0),C(0,4),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則 b的取值范圍是( 。
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.化簡$\sqrt{1-si{n}^{2}α}$的結(jié)果為(  )
A.sinαB.-sinαC.±cosαD.-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的單調(diào)區(qū)間(1)y=x-lnx   (2)y=$\frac{1}{2x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行,則下面四個命題:
①$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$;
②$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
③$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$不與$\overrightarrow c$垂直;
④$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
其中是真命題的為( 。
A.①③B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根;命題q:對任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命題,“p且q”是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案