分析 首先畫(huà)出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義求最小值.
解答 解:約束條件對(duì)應(yīng)的可行域如圖:
Z=2x+3y變形為y=$-\frac{2}{3}$x+$\frac{z}{3}$,
由其幾何意義當(dāng)直線經(jīng)過(guò)A點(diǎn)時(shí),z最小,
由$\left\{\begin{array}{l}{x-3y=-2}\\{x=1}\end{array}\right.$得A(1,1),
所以Z=2x+3y的最小值為2×1+3×1=5;
故答案為:5.
點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題;由約束條件求目標(biāo)函數(shù)的最值,一般首先畫(huà)出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{\left.x\right|2kπ-\frac{3}{4}π<x<2kπ+\frac{π}{4},k∈Z}\right\}$ | B. | $\left\{{\left.x\right|2kπ+\frac{π}{4}<x<2kπ+\frac{5}{4}π,k∈Z}\right\}$ | ||
C. | $\left\{{\left.x\right|kπ-\frac{π}{4}<x<kπ+\frac{π}{4},k∈Z}\right\}$ | D. | $\left\{{\left.x\right|kπ+\frac{π}{4}<x<kπ+\frac{3}{4}π,k∈Z}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{16}$ | B. | $\frac{13}{16}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n=2011時(shí),該命題成立 | B. | n=2013時(shí),該命題成立 | ||
C. | n=2011時(shí),該命題不成立 | D. | n=2013時(shí),該命題不成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com