(2011•成都一模)已知單位正方體ABCD-A1B1C1D1的頂點(diǎn)都在以O(shè)為球心的球面上,則A、C1兩點(diǎn)在該球面上的球面距離為( 。
分析:由已知中棱長為1的正方體ABCD-A1B1C1D1 的八個頂點(diǎn)都在球O的表面上,我們可以求出球O的半徑,進(jìn)而根據(jù)AC1是球的一條直徑,進(jìn)而根據(jù)弧長公式,即可求出答案.
解答:解:∵棱長為1的正方體ABCD-A1B1C1D1 的八個頂點(diǎn)都在球O的表面上,
故球O的直徑等于正方體的對角線長
即2R=
3

∴R=
3
2

又∵AC1是球的一條直徑,
則A,C1兩點(diǎn)之間的球面距離為l=πR=
3
2
π

故選B.
點(diǎn)評:本題考查的知識點(diǎn)是球內(nèi)接多面體,弧長公式,其中根據(jù)已知條件求出球的關(guān)徑,及AC1是球的一條直徑是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都一模)已知函數(shù)f(x)=x3+(4-a)x2-15x+a,a∈R.
(I)若點(diǎn)P(0,-2)在函數(shù)f(x)的圖象上,求a的值和函數(shù)f(x)的極小值;
(II)若函數(shù)f(x)在(-1,1)上是單調(diào)遞減函數(shù),求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都一模)已知函數(shù)f(x)=x2-ax+2(x∈[a,a+1]),若函數(shù)f(x)的最小值恒不大于a,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都一模)已知函數(shù)f(x)由下表定義:
x -2 2 1 3 4
f(x) 0 1 3 4 5
記f(x)的反函數(shù)為f-1(x),則f-1(4)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都一模)“m<-2”是“關(guān)于x的一元二次方程x2+mx+1=0有實(shí)數(shù)解”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都一模)設(shè)a是從集合{1,2,3,4}中隨機(jī)取出的一個數(shù),b是從集合{1,2,3}中隨機(jī)取出的一個數(shù),構(gòu)成一個基本事件(a,b).記“這些基本事件中,滿足a≥b>1”為事件E,則E發(fā)生的概率是( 。

查看答案和解析>>

同步練習(xí)冊答案