分析 法一:令x=2sint,dx=2costdt,x=2時,t=$\frac{π}{2}$,x=0時,t=0,則${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=$2{∫}_{0}^{\frac{π}{2}}2co{s}^{2}tdt$+($\frac{1}{3}$x3)${|}_{0}^{2}$,由此能求出結果.
法二:由${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$是圓x2+y2=4的面積的$\frac{1}{4}$,得${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$=$\frac{1}{4}×π×4+(\frac{1}{3}{x}^{3}){|}_{0}^{2}$,由此能求出結果.
解答 解法一:令x=2sint,dx=2costdt,x=2時,t=$\frac{π}{2}$,x=0時,t=0,
則${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx
=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$
=$2{∫}_{0}^{\frac{π}{2}}2co{s}^{2}tdt$+($\frac{1}{3}$x3)${|}_{0}^{2}$
=2${∫}_{0}^{\frac{π}{2}}(1-cos2t)dt$+$\frac{8}{3}$
=(2t-sin2t)${|}_{0}^{\frac{π}{2}}$+$\frac{8}{3}$
=π+$\frac{8}{3}$.
解法二:∵${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$是圓x2+y2=4的面積的$\frac{1}{4}$,
∴${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$
=$\frac{1}{4}×π×4+(\frac{1}{3}{x}^{3}){|}_{0}^{2}$
=$π+\frac{8}{3}$.
故答案為:$π+\frac{8}{3}$.
點評 本題考查定積分的求不地,是中檔題,解題時要認真審題,注意換元法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x12+x22+x32=14 | B. | 1+a+b=0 | C. | a2-4b=0 | D. | x1+x3=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,1) | B. | (1,4) | C. | (1,3) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,-1) | B. | (-1,0) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 75° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com