如圖,已知圓O內(nèi)接四邊形ABCD中,AB=1,BC=2,CD=3,DA=4
求(1)四邊形ABCD的面積;
(2)圓O的半徑R.
分析:(1)連接AC,在△ABC、△ACD中分別用由余弦定理求AC2,兩式右邊相等消去AC2,式子兩角是互補的,得出角的正弦值,利用三角形面積公式可求出兩個三角形的面積,加起來是要求的四邊形的面積.
(2)由(1)可求出sin∠ADC和AC,利用正弦定理得直徑,除以2得半徑.
解答:解:(1)連接AC,在△ABC中由余弦定理,得
AC2=AB2+BC2-2AB•BCcos∠ABC=12+22-2×1×2cos∠ABC=5-4cos∠ABC(3分)
在△ACD中由余弦定理,得AC2=AD2+DC2-2AD•DCcos∠ADC=42+32-2×4×3cos∠ADC=25-24cos∠ADC(6分)
從而得5-4cos∠ABC=25-24cos∠ADC,
又∠ADC=π-∠ABC,故cos∠ADC=
5
7
,(9分)
sin∠ADC=
2
6
7

所以AC2=25-24×
5
7
=
55
7
.(10分)
所以S四邊形ABCD=
1
2
(1×2+3×4)sin∠ADC=
14
2
×
2
6
7
=2
6
(12分)
(2)由2R=
AC
sin∠ADC
=
55
7
×
7
2
6
,解得R=
2310
24
(16分)
點評:本題兩次用到余弦定理,銜接點有兩處,一是有一條公共邊,二是式子中兩個角互補,圓內(nèi)接四邊形的對角補,要從圖中讀出,這點很重要;
正弦定理記憶的時候要全面,它的比值是三角形外接圓的直徑,知道這一點,問題迎刃而解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
3
2

(1)設F是CD的中點,證明:OF∥平面ADE;
(2)求點B到平面ADE的距離;
(3)畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關系與至少一邊的長).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,EC⊥平面ABC,AB=2AC=2,數(shù)學公式
(1)設F是CD的中點,證明:OF∥平面ADE;
(2)求點B到平面ADE的距離;
(3)畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關系與至少一邊的長).

查看答案和解析>>

同步練習冊答案