f(x)=
3
sin2ωx+1(ω>0)在區(qū)間[-
2
,
π
2
]上為增函數(shù),則ω的最大值為
 
考點(diǎn):三角函數(shù)的最值
專(zhuān)題:三角函數(shù)的求值
分析:由題意可得可得-
2
•2ω≥2kπ-
π
2
,且 
π
2
•2ω≤2kπ+
π
2
,k∈z,求得ω的最大值.
解答: 解:∵f(x)=
3
sin2ωx+1(ω>0)在區(qū)間[-
2
,
π
2
]上為增函數(shù),
可得-
2
•2ω≥2kπ-
π
2
,且 
π
2
•2ω≤2kπ+
π
2
,k∈z,
求得ω≤
1
6
,故ω的最大值為
1
6
,
故答案為:
1
6
點(diǎn)評(píng):本題主要考查求正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F作垂直于x軸的直線(xiàn)交橢圓上方部分一點(diǎn)P,Q、R分別是橢圓的上頂點(diǎn)、右頂點(diǎn),O是原點(diǎn),OP∥QR,|FR|=2+
2

(1)求橢圓的方程;
(2)直線(xiàn)l:y=2x+m交橢圓于A、B兩點(diǎn),M(0,1),若AM⊥RB,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x-1|+|x-2|≤3的解集為(  )
A、[0,3]
B、[0,4]
C、[1,3]
D、[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F位于直線(xiàn)x+y-1=0上.
(1)求拋物線(xiàn)方程;
(2)過(guò)拋物線(xiàn)的焦點(diǎn)F作傾斜角為45°的直線(xiàn),交拋物線(xiàn)于A,B兩點(diǎn),求AB的中點(diǎn)C到拋物線(xiàn)準(zhǔn)線(xiàn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,給定下列的命題:
①若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上恰有1個(gè)零點(diǎn);
②若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上至少有1個(gè)零點(diǎn);
③若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上沒(méi)有零點(diǎn);
④若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上可能有零點(diǎn).
其中正確的命題有
 
 (填寫(xiě)正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD中,AB=2,DE=EC,若F是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),則
AE
AF
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P在x軸上的射影為H,且
PA
PB
=λ•|
PH
|2,其中λ≥0
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程并討論C的軌跡形狀
(2)過(guò)點(diǎn)A(-2,0)且斜率為1的直線(xiàn)交曲線(xiàn)C于M,N兩點(diǎn),若MN中點(diǎn)橫坐標(biāo)為-
2
3
.求實(shí)數(shù)λ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(1,2)到直線(xiàn)x-y-1=0的距離是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案