設平面向量
(I)當m,n∈{-2,-1,1,2}時.記“”為事件A,求事件A發(fā)生的概率;
(II)當m∈[-1,2],n∈[-1,1]時,記“所成角為鈍角”為事件B,求事件B發(fā)生的概率.
【答案】分析:(1)首先求出有序數(shù)組(m,n)的所有可能結果,然后找出滿足條件的所有數(shù)組,運用古典概型求事件A發(fā)生的概率;
(2)根據(jù)知,所成角為鈍角,則2m+n<0,除去使余弦值為-1的角,結合m∈[-1,2],n∈[-1,1]求出m和n所滿足的條件,運用幾何概型求事件B發(fā)生的概率.
解答:解:(I)有序數(shù)組(m,n)的所有可能結果為:(-2,-2),(-2,-1),(-2,1),(-2,2),
(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),
(2,-1),(2,1),(2,2)共有16種.
使得成立的( m,n ),滿足:2m+n=0,n=-2m
事件A有(-1,2),(1,-2)有2種.
故所求的概率為:
(II)使得所成角為鈍角成立的( m,n )滿足:2m+n<0,且mn≠2.
,,區(qū)域如圖所示,

點評:本題考查了運用數(shù)量積判斷兩個向量的垂直關系,考查了古典概型和幾何概型,考查了數(shù)學轉化思想,注意(2)中的測度比是面積比,該題為中檔難度的題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:閱讀理解

請先閱讀:
設平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夾角為θ,
因為
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)試求函數(shù)y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
a
=(m,1)
,
b
=(2,n)

(I)當m,n∈{-2,-1,1,2}時.記“
a
b
”為事件A,求事件A發(fā)生的概率;
(II)當m∈[-1,2],n∈[-1,1]時,記“
a
b
所成角為鈍角”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).若存在實數(shù)m(m≠0)和角θ(θ∈(-
π
2
,
π
2
))
,使向量
c
=
a
+(tan2θ-3)
b
,
d
=-m
a
+
b
tanθ,且
c
d

(I)求函數(shù)m=f(θ)的關系式;  
(II)令t=tanθ,求函數(shù)m=g(t)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都四中高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設平面向量,
(I)當m,n∈{-2,-1,1,2}時.記“”為事件A,求事件A發(fā)生的概率;
(II)當m∈[-1,2],n∈[-1,1]時,記“所成角為鈍角”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

同步練習冊答案