【題目】已知函數(shù)和函數(shù),關(guān)于這兩個函數(shù)圖像的交點個數(shù),下列四個結(jié)論:①當(dāng)時,兩個函數(shù)圖像沒有交點;②當(dāng)時,兩個函數(shù)圖像恰有三個交點;③當(dāng)時,兩個函數(shù)圖像恰有兩個交點;④當(dāng)時,兩個函數(shù)圖像恰有四個交點.正確結(jié)論的個數(shù)為( )
A.B.C.D.
【答案】D
【解析】
由兩個函數(shù)圖像交點個數(shù),轉(zhuǎn)化為的解的個數(shù),進(jìn)而轉(zhuǎn)化為的解的個數(shù),令,利用導(dǎo)數(shù)求得函數(shù)單調(diào)性與最值,結(jié)合函數(shù)的性質(zhì),即可求解.
由題意,兩個函數(shù)和函數(shù)圖像交點個數(shù),
即為方程的解的個數(shù),即方程的解的個數(shù),
令,
①當(dāng)時,函數(shù),則,
所以在上為增函數(shù),值域為;
②當(dāng)時,,,
由,得.
當(dāng)時,,為增函數(shù);
當(dāng)時,,為減函數(shù);
當(dāng)時,,
所以函數(shù)在上有最大值為,
令,方程,化為,
當(dāng)時,方程無解,原方程無解,兩個函數(shù)圖像無交點;
當(dāng)時,方程有唯一解,,原方程有唯一解,
兩個函數(shù)圖像恰有一個交點;
當(dāng)時,方程有兩解,,原
方程有兩解,兩個函數(shù)圖像恰有兩個交點;
當(dāng)時,方程有兩解,,原方程有三解,兩個函數(shù)圖像恰有三個交點;
當(dāng)時,方程有兩解,,原方程有四解,兩個函數(shù)圖像恰有四個交點.
故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知分別是橢圓:()的左右焦點,點是橢圓上一點,且.若橢圓的內(nèi)接四邊形的邊的延長線交于橢圓外一點,且點的橫坐標(biāo)為1,記直線的斜率分別為,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績,由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;
(2)(ⅰ)若采用分層抽樣的方法從分?jǐn)?shù)落在區(qū)間,內(nèi)抽取4人,求從分?jǐn)?shù)落在區(qū)間,內(nèi)各抽取的人數(shù);
(ⅱ)從上述抽取的4人中再隨機(jī)抽取2人,求這2人全部來自于區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備將1000萬元資金投人到市環(huán)保工程建設(shè)中,現(xiàn)有甲,乙兩個建設(shè)項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如表所示:
110 | 120 | 170 | |
0.4 |
且的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨立且調(diào)整的概率分別為和.若乙項目產(chǎn)品價格一年內(nèi)調(diào)整次數(shù)(次數(shù))與的關(guān)系如表所示:
0 | 1 | 2 | |
41.2 | 117.6 | 204.0 |
(1)求,的值;
(2)求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,其焦點到準(zhǔn)線的距離為2.直線與拋物線交于,兩點,過,分別作拋物線的切線與,與交于點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變),得到曲線.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,,,),使點、到的距離都為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于不同的兩點,線段的中點為,且直線與直線的斜率之積為.若直線與直線交于點,與直線交于點,且點為直線上一點.
(1)求的軌跡方程;
(2)若為橢圓的上頂點,直線與軸交點,記表示面積,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點且傾斜角為.以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,l與C交于M,N兩點.
(1)求C的直角坐標(biāo)方程和的取值范圍;
(2)求MN中點H的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某高校藝術(shù)類考試中,共有6位選手參加,其中3位女生,3位男生,現(xiàn)這6名考生依次出場進(jìn)行才藝展出,如果3位男生中任何2人都不能連續(xù)出場,且女生甲不能排第一個,那么這6名考生出場順序的排法種數(shù)為( )
A.108B.120C.132D.144
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com