A. | $\frac{(n+1)(n+2)}{2}$ | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n}{n+1}$ | D. | $\frac{n}{n+2}$ |
分析 利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出通項(xiàng),令x的指數(shù)等于n,求出an;利用裂項(xiàng)求和求出數(shù)列的前n項(xiàng)和.
解答 解:∵Tr+1=Cn+2rxr,
∴an=Cn+2n=Cn+22=$\frac{(n+2)(n+1)}{2}$,
∴$\frac{1}{{a}_{n}}$=$\frac{2}{(n+2)(n+1)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為2($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$)=2($\frac{1}{2}$-$\frac{1}{n+2}$)=$\frac{n}{n+2}$,
故選:D
點(diǎn)評(píng) 本題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式;本題考查利用裂項(xiàng)求數(shù)列的前n項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ],k∈Z | B. | [-$\frac{π}{6}$+2kπ,$\frac{7π}{6}$+2kπ],k∈Z | ||
C. | [$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈Z | D. | [-$\frac{π}{3}$+2kπ,$\frac{4π}{3}$+2kπ],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com