函數(shù)f(x)=lgx-1的零點是( 。
A、10
B、
1
10
C、(10,0)
D、(0,10)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)零點的定義得出lgx-1=0,x=10,即可選擇答案.
解答: 解:∵函數(shù)f(x)=lgx-1,單調(diào)遞增,在(0,+∞)只有1個零點
∴l(xiāng)gx-1=0,x=10
∴函數(shù)f(x)=lgx-1的零點是10
故選:A
點評:本題考查了函數(shù)的單調(diào)性,對數(shù)函數(shù)的零點問題,計算較小,難度不大,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)
1-2i
2+i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx-
a
2
x2(a∈R).
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)-x有兩個極值點x1、x2,是否存在實數(shù)a,使得
lnx2-lnx1
x2-x1
=g′(a)成立,若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosωx(sinωx+cosωx)+1(x∈R,ω>0)的最小正周期是π.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知4件產(chǎn)品中有2件不合格,檢測人員每次檢測一件,求:
(1)前兩次檢測人員就把不合格產(chǎn)品確定出來的概率; 
(2)檢測到第三次就把2件不合格產(chǎn)品確定出來的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的上頂點 A作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點分別為 B、C,若
CA
=2
AB
,則雙曲線的離心率是( 。
A、
5
B、
5
4
C、
10
D、
10
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
-x
2+lnx
+ax.
(Ⅰ)若函數(shù)f(x)在(
1
e
,+∞)上是增函數(shù),求實數(shù)a的最小值;
(Ⅱ)若?x1,x2∈[1,e2],使f(x1)≥f′(x2)-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ACDF為正方形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,M為AB的中點.
(Ⅰ)證明:BC⊥AD;
(Ⅱ)證明EM∥平面ACDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an+3n,則下列結(jié)論錯誤的是(  )
A、{
an
3n
-1
}成等比數(shù)列
B、{an-3n}成等比數(shù)列
C、{an+2n}成等比數(shù)列
D、{an-2n}成等比數(shù)列

查看答案和解析>>

同步練習冊答案