已知數(shù)列{an}的首項a1=3,通項an與前n項和Sn之間滿足2an=SnSn-1(n≥2).
(1)求證{
1Sn
}
是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項公式.
分析:(1)由題設(shè)知2(Sn-Sn-1)=SnSn-1,兩邊同時除以SnSn-1,得2((
1
Sn-1
-
1
Sn
)=1
,由此知{
1
Sn
}
是等差數(shù)列,公差d=-
1
2

(2)由題設(shè)知
1
Sn
=
1
3
+(n-1)×(-
1
2
)=
1
2
n+
5
6
,故Sn=
6
3n+5
.由此能導(dǎo)出數(shù)列{an}的通項公式.
解答:解:(1)∵2an=SnSn-1(n≥2)∴2(Sn-Sn-1)=SnSn-1
兩邊同時除以SnSn-1,得2(
1
Sn-1
-
1
Sn
)=1

1
Sn
-
1
Sn-1
=-
1
2

{
1
Sn
}
是等差數(shù)列,公差d=-
1
2

(2)∵
1
S1
=
1
a1
=
1
3

1
Sn
=
1
3
+(n-1)×(-
1
2
)=-
1
2
n+
5
6
=
5-3n
6

Sn=
6
5-3n

當(dāng)n≥2時,an=
1
2
SnSn-1=
1
2
×
6
5-3n
×
6
8-3n
=
18
(5-3n)(8-3n)

an=
3,n=1
18
(8-3n)(5-3n)
,n≥2
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細解答,注意公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
1
2
,前n項和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*,當(dāng)n≥2,時,an總是3Sn-4與2-
52
Sn-1
的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=3,通項an與前n項和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}中的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案