16.已知正方體ABCD-A1B1C1D1的各個(gè)頂點(diǎn)都在球O的球面上,若球O的表面積為16π,過點(diǎn)A,B,C,D作球O的截面,則該截面的面積為$\frac{8π}{3}$.

分析 求出球O的半徑,正方體的棱長(zhǎng),可得截面的半徑,即可求出截面的面積.

解答 解:由S=4πR2=16π,得R=2,即2R=4,
正方體ABCD-A1B1C1D1的體對(duì)角線等于其外接球O的直徑,故正方體的棱長(zhǎng)為$\frac{4}{\sqrt{3}}$,
設(shè)截面的半徑為r,則r=$\sqrt{4-(\frac{2}{\sqrt{3}})^{2}}$=$\sqrt{\frac{8}{3}}$,
∴截面的面積為$π•\frac{8}{3}$=$\frac{8π}{3}$.
故答案為:$\frac{8π}{3}$.

點(diǎn)評(píng) 本題為正方體與外接球的問題,正方體的體對(duì)角線等于其外接球O的直徑是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.骨質(zhì)疏松癥被稱為“靜悄悄的流行病“,早期的骨質(zhì)疏松癥患者大多數(shù)無明顯的癥狀,針對(duì)中學(xué)校園的學(xué)生在運(yùn)動(dòng)中骨折事故頻發(fā)的現(xiàn)狀,教師認(rèn)為和學(xué)生喜歡喝碳酸飲料有關(guān),為了驗(yàn)證猜想,學(xué)校組織了一個(gè)由學(xué)生構(gòu)成的興趣小組,聯(lián)合醫(yī)院檢驗(yàn)科,從高一年級(jí)中按分層抽樣的方法抽取50名同學(xué) (常喝碳酸飲料的同學(xué)30,不常喝碳酸飲料的同學(xué)20),對(duì)這50名同學(xué)進(jìn)行骨質(zhì)檢測(cè),檢測(cè)情況如表:(單位:人)
有骨質(zhì)疏松癥狀無骨質(zhì)疏松癥狀總計(jì)
常喝碳酸飲料的同學(xué)22830
不常喝碳酸飲料的同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為骨質(zhì)疏松癥與喝碳酸飲料有關(guān)?
(2)現(xiàn)從常喝碳酸飲料且無骨質(zhì)疏松癥狀的8名同學(xué)中任意抽取兩人,對(duì)他們今后是否有骨質(zhì)疏松癥狀情況進(jìn)行全程跟蹤研究,記甲、乙兩同學(xué)被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知A=$\frac{π}{2}$+C,sinB=$\frac{3}{5}$.
(1)求cosC的值;
(2)若a+c=3$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{πx}{m}$,函數(shù)f(x)的對(duì)稱軸為x=x0,若存在x0滿足${x}_{0}^{2}$+[f(x0)]2<m2,則m的取值范圍為( 。
A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2^x}&{({x≤2})}\\{{{log}_{\frac{1}{2}}}x}&{({x>2})}\end{array}}$,則函數(shù)y=f(1-x)的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)圓錐的軸截面的周長(zhǎng)是4,則圓錐的側(cè)面積的最大值是( 。
A.0.5πB.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知tan2α=tan2β+1,求證:sin2β=2-$\frac{1}{si{n}^{2}α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)正整數(shù)n定義一種新運(yùn)算“*”,它滿足①1*1=1,②(n+1)*1=2(n*1),則2*1=2;n*1=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足:2an=an+1+an-1(n≥2,n∈N*),且a1>0,a1、3、a3依次成等比數(shù)列,則數(shù)列{an}前四項(xiàng)和的最小值為6$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案