點(diǎn)P是橢圓外的任意一點(diǎn),過(guò)點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請(qǐng)問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否總是相等?若是,請(qǐng)給出證明。
(1)直線的方程;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),總是相等的.證明詳見(jiàn)試題解析.

試題分析:(1)先設(shè)點(diǎn)的坐標(biāo)為則可得過(guò)點(diǎn)的切線方程,由兩點(diǎn)確定一條直線可得的方程;(2)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),總是相等的.利用向量夾角公式通過(guò)計(jì)算驗(yàn)證.
試題解析:(1)設(shè)點(diǎn)的坐標(biāo)為則過(guò)點(diǎn)的切線方程分別為.因?yàn)辄c(diǎn)在切線上,所以.同理.故直線的方程.                                      5分
(2)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),總是相等的.設(shè)點(diǎn)的坐標(biāo)為,則由(1)知,,
同理,.                               13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.

(I)求橢圓C的方程;
(II)如圖,動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且,,四邊形面積S的求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為.
(I)求橢圓的方程;  
(II)過(guò)左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若三角形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓和雙曲線的公共焦點(diǎn)為,是兩曲線的一個(gè)公共點(diǎn),則cos的值等于(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,是橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P,使得,則橢圓的離心率的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問(wèn)在軸上是否存在點(diǎn),使是與無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,設(shè)橢圓的左右焦點(diǎn)分別為,過(guò)焦點(diǎn)的直線交橢圓于兩點(diǎn),若的內(nèi)切圓的面積為,設(shè)兩點(diǎn)的坐標(biāo)分別為,則值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實(shí)數(shù)k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案