中,,,
(1)求長;
(2)求的值.

(1),(2)

解析試題分析:(1)由已知可得,而由正弦定理:可得
(2)由(1)及已知三角形的三邊長都知道,所以由余弦定理可求cosA的值,從而sinA及sin2A和cos2A均可求得,由正弦的差角公式就很容易求得的值.
試題解析:(1)解:在△ABC中,根據(jù)正弦定理,于是AB=
(2)解:在△ABC中,根據(jù)余弦定理,得
于是  sinA= 
從而sin2A=2sinAcosA=,cos2A=cos2A-sin2A=
所以  sin(2A-)=sin2Acos-cos2Asin=
考點:1.正弦定理及余弦定理;2.三角恒等變形公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,已知,,,求B及S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,角所對的邊分別為,已知,,
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,,,且的夾角是
(1)求角C;
(2)已知 ,三角形ABC的面積,求a+b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,分別為內角A,B,C的對邊,且
(1)求A的大;
(2)若,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且.
(1)確定角C的大小:
(2)若c=,且△ABC的面積為,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,內角,,所對的邊分別為,,已知.
(1)求證:,,成等比數(shù)列;
(2)若,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛,假設該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經過t小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)假設小艇的最高航行速度只能達到30海里/小時,試設計航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

△ABC中,A、B、C所對的邊分別為a、b、c,且滿足csinA=acosC,則角C= ▲  

查看答案和解析>>

同步練習冊答案