(2012•吉安縣模擬)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,又知(xlnx)′=lnx+1,且S10=
e
1
lnxdx,S20=17,則S30為( 。
分析:先利用微積分基本定理求定積分的值,得S10=1,再利用等差數(shù)列的性質(zhì),即S10,S20-S10,S30-S20為等差數(shù)列,即可列方程得所求值
解答:解:S10=
e
1
lnxdx=(xlnx-x)
|
e
1
=e-e-(-1)=1
∵等差數(shù)列中,S10,S20-S10,S30-S20為等差數(shù)列,
即1,17-1,S30-17為等差數(shù)列,
∴32=1+S30-17
∴S30=48
故選 C
點(diǎn)評:本題主要考查了利用微積分基本定理求定積分的方法,等差數(shù)列的定義和性質(zhì)運(yùn)用,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)已知a,b是實(shí)數(shù),i是虛數(shù)單位,若滿足
a
1-bi
=1+i
,則a+bi等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)已知集合A={0,1},B={y|x2+y2=1,x∈A},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)已知a,b都為正實(shí)數(shù),且
1
a
+
1
b
=1
,則
2+b
2ab
的最大值為
9
16
9
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)選做題:請考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評閱計(jì)分.本題共5分.
(1).(不等式選講)若不等式||x-a|-2|<1的解集是(-2,0)∪(2,4),則實(shí)數(shù)a=
1
1

(2).(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,點(diǎn)M(4,
π
3
)到直線l:ρ(2cosθ+sinθ)=4的距離d=
2
15
5
2
15
5

查看答案和解析>>

同步練習(xí)冊答案