9.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2016=b0+b1x+b2x2+…+b2016x2016(x∈R),則$\frac{b_1}{2}$+$\frac{b_2}{2^2}$+…+$\frac{{{b_{2016}}}}{{{2^{2016}}}}$的值為( 。
A.0B.-1C.1D.e

分析 首先利用定積分的幾何意義求出a,然后利用二項(xiàng)式定理,將x賦值為$\frac{1}{2}$即可.

解答 解:a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx=$\frac{1}{2}×\frac{1}{π}×π×{2}^{2}$=2,
(1-2x)2016=b0+b1x+b2x2+…+b2016x2016(x∈R),
令x=$\frac{1}{2}$,
則$\frac{b_1}{2}$+$\frac{b_2}{2^2}$+…+$\frac{{{b_{2016}}}}{{{2^{2016}}}}$=(1-2x)2016-b0=0-1=-1;
故選:B.

點(diǎn)評 本題考查了利用定積分的幾何意義求定積分以及二項(xiàng)式定理的應(yīng)用求展開式的系數(shù)問題;正確賦值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知正實(shí)數(shù)x,y滿足$\frac{1}{2x+y}$+$\frac{4}{2x+3y}$=1,則x+y的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=mx2-m(m-1)x+1在[0,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.m≤1B.0<m≤1C.0≤m≤1D.m≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出i的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,交AC于點(diǎn)E,過點(diǎn)E作ED⊥BE交AB于點(diǎn)D.
(1)求證:AE2=AD•AB;
(2)已知AD=$\frac{2\sqrt{3}}{3}$,AE=2,求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)(x∈R)滿足f(1+x)=f(1-x),若函數(shù)y=f(x)的圖象與函數(shù)y=(x-1)2-2|x-1|-3圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則兩圖象所有交點(diǎn)的橫坐標(biāo)之和為( 。
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.512015除以13,所得余數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{sin2x-2si{n}^{2}x}{sinx}$.則f(x)的最大值為2$\sqrt{2}$;f(x)在(0,π)上的單調(diào)遞增區(qū)間為[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)a∈R,函數(shù)f(x)=x3-3ax2+a.
(1)若x=-1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)a,使得x∈[1-a,1+a]時,恒有-1≤f′(x)≤1成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù))?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案