精英家教網 > 高中數學 > 題目詳情

【題目】是定義在上的偶函數, ,都有,且當時, ,若函數)在區(qū)間內恰有三個不同零點,則實數的取值范圍是( )

A. B.

C. D.

【答案】A

【解析】可得函數的圖象關于對稱,即

又函數是偶函數,則,

,即函數的周期是4

時, ,此時,

函數)在區(qū)間內恰有三個不同零點,

∴函數的圖象在區(qū)間內有三個不同的公共點.

作出函數的圖象如圖所示

①當,函數為增函數,

結合圖象可得,要使兩函數的圖象有三個公共點,則需滿足在點A處的函數值小于2,在點B處的函數值大于2,

,解得

②當,函數為減函數,

結合圖象可得,要使兩函數的圖象有三個公共點,則需滿足在點C處的函數值小于,在點B處的函數值大于,

解得

綜上可得實數的取值范圍是.選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l經過點P(2,0),其傾斜角為,在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為

Ⅰ)若直線l與曲線C有公共點,求傾斜角的取值范圍;

Ⅱ)設M(x,y)為曲線C上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:

1)求關于的線性回歸方程;

2)利用()中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,底面,,分別是棱,的中點,為棱上的一點,且//平面.

(1)的值;

(2)求證:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.

(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤(單位:元)關于當天需求量(單位:枝, )的函數解析式.

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(1)若花店一天購進17枝玫瑰花, 表示當天的利潤(單位:元),求的分布列及數學期望;

(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應購進16枝好還是17枝好?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把長和寬分別為和2的長方形沿對角線折成的二面角,下列正確的命題序號是__________

①四面體外接球的體積隨的改變而改變;

的長度隨的增大而增大;

③當時,長度最長;

④當時,長度等于.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,四邊形為矩形,四邊形為梯形, ,平面與平面垂直,且.

(1)求證: 平面;

(2)若,且平面與平面所成銳二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】無窮數列滿足: 為正整數,且對任意正整數 為前, , 中等于的項的個數.

)若,請寫出數列的前7項;

)求證:對于任意正整數必存在,使得;

)求證:“”是“存在,當時,恒有 成立”的充要條件。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知四棱錐 中,

.

(1)證明:頂點在底面的射影為邊的中點;

(2)點上,且,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案