某種報紙,進貨商當天以每份進價元從報社購進,以每份售價元售出。若當天賣不完,剩余報紙報社以每份元的價格回收。根據市場統(tǒng)計,得到這個季節(jié)的日銷售量(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率。

(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)若進貨量為(單位:份),當時,求利潤的表達式;
(Ⅲ)若當天進貨量,求利潤的分布列和數(shù)學期望(統(tǒng)計方法中,同一組數(shù)據常用該組區(qū)間的中點值作為代表).

①.. ②. .③. .

解析試題分析:(Ⅰ)利用直方圖中矩形面積和為1,列出方程即可. (Ⅱ)利潤銷售份數(shù) (銷售價 進價) 剩余份數(shù) (進價 回收價). (Ⅲ)注意直方圖中區(qū)間中點作為統(tǒng)計銷售量,故有當天銷售量可能為 三種情況,進一步計算利潤,寫出分布列即可求期望.
試題解析:(Ⅰ)由圖可得:, 解得      ..2分
(Ⅱ),    ..7分
(Ⅲ)若當天進貨量,依題意銷售量可能值為,,;對應的分別為:100,250,400.
利潤的分布列為:


100
250
400

0.20
0.35
0.45
所以,(元)   12分
考點: 1.頻率分布直方圖;2.統(tǒng)計方法;3.期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)

(1)根據頻率分布直方圖,求出這20名學生身高中位數(shù)的估計值和平均數(shù)的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)因干旱缺水,政府向市民宣傳節(jié)約用水,并進行廣泛動員 三個月后,統(tǒng)計部門在一個小區(qū)隨機抽取了戶家庭,分別調查了他們在政府動員前后三個月的月平均用水量(單位:噸),將所得數(shù)據分組,畫出頻率分布直方圖(如圖所示)

動員前                                 動員后
(Ⅰ)已知該小區(qū)共有居民戶,在政府進行節(jié)水動員前平均每月用水量是噸,請估計該小區(qū)在政府動員后比動員前平均每月節(jié)約用水多少噸;
(Ⅱ)為了解動員前后市民的節(jié)水情況,媒體計劃在上述家庭中,從政府動員前月均用水量在內的家庭中選出戶作為采訪對象,其中甲、乙兩家在備選之列,求恰好選中他們兩家作為采訪對象的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高校在2011年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試.
① 已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙同時進入第二輪面試的概率;
② 學校決定在這6名學生中隨機抽取2名學生接受考官的面試,設第4組中有X名學生被考官面試,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了調查某大學學生在周日上網的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:
表1:男生上網時間與頻數(shù)分布表

上網時間(分鐘)





人數(shù)
5
25
30
25
15
表2:女生上網時間與頻數(shù)分布表
上網時間(分鐘)





人數(shù)
10
20
40
20
10
(Ⅰ)若該大學共有女生750人,試估計其中上網時間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的列聯(lián)表,并回答能否有90%的把握認為“學生周日上網時間與性別有關”?
(Ⅲ)從表3的男生中“上網時間少于60分鐘”和“上網時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網時間超過60分鐘的概率.
表3 :
 
上網時間少于60分鐘
上網時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學舉行了一次“環(huán)保知識競賽”, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表

組別
分組
頻數(shù)
頻率
第1組
[50,60)
8
0.16
第2組
[60,70)
a

第3組
[70,80)
20
0.40
第4組
[80,90)

0.08
第5組
[90,100]
2
b
 
合計


頻率分布直方圖

(Ⅰ)寫出的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動.求所抽取的2名同學中至少有1名同學來自第5組的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


在對某校高一學生體育選修項目的一次調查中,共調查了160人,其中女生85人,男生75人.女生中有60人選修排球,其余的人選修籃球;男生中有20人選修排球,其余的人選修籃球.(每人必須選一項,且只能選一項)
根據以上數(shù)據建立一個2×2的列聯(lián)表;
能否在犯錯誤的概率不超過0.001的前提下認為性別與體育選修項目有關?
參考公式及數(shù)據:,其中.

K2≥k0
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據:

房屋面積(m2)
115
110
80
135
105
銷售價格(萬元)
24.8
21.6
18.4
29.2
22
(1)畫出數(shù)據對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)根據(2)的結果估計當房屋面積為150 m2時的銷售價格.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在調查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
(1)根據以上數(shù)據建立一個的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.05的前提下認為暈機與性別有關?

查看答案和解析>>

同步練習冊答案