求函數(shù)y=2sinx+1的最大值、最小值和最小正周期.
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用y=sinx的周期以及最值解答本題.
解答: 解:當(dāng)sinx=1時,y的最大值為2+1=3,;當(dāng)sinx=-1時,y的最小值為-2+1=-1;
最小正周期為2π.
點評:本題考查了三角函數(shù)的最值以及周期的求法;y=Asinx+k的最大值為|A|+k,最小值為-|A|+k;最小正周期為2π.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
1
2x+1
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(a+lnx)有極小值-e-2
(1)求實數(shù)a的值;
(2)若k∈Z,且k<
f(x)
x-1
對任意x>1恒成立,求k的最大值;
(3)當(dāng)n>m>1,(n,m∈Z)時,證明:(mnnm>(nmmn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)定義域為R,x>0時f(x)>1且對任意x,y∈R,有f(x+y)=f(x)•f(y),
(1)求f(0);
(2)判斷其單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的多面體是由底面為ABCD的長方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1
(Ⅰ)求BF的長;
(Ⅱ)求面AEC1F與底面ABCD所成二面角的余弦值
(Ⅲ)求點C到平面AEC1F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式.
(1)3x2-x-4>0;
(2)x2-x-12≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-4
x
+m,當(dāng)0≤x≤9時,f(x)≥1恒成立,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,n),
b
=(-1,n),若2
a
+
b
b
垂直,則|
a
|=( 。
A、1
B、
2
C、
2
3
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的對數(shù)1gx=31gn-1gm,求x的值.

查看答案和解析>>

同步練習(xí)冊答案