已知函數(shù)f(x)=xlnx.
(l)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意x∈(0,+∞),f(x)≥
-x2+mx-3
2
恒成立,求實(shí)數(shù)m的最大值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問(wèn)題
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(l)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和極值之間的關(guān)系即可求f(x)的單調(diào)區(qū)間和極值;
(2)利用不等式恒成立,進(jìn)行參數(shù)分離,利用導(dǎo)數(shù)即可求出實(shí)數(shù)m的最大值.
解答: 解 (1)∵f(x)=xlnx,
∴f'(x)=lnx+1,
∴f'(x)>0有 x>
1
e
,∴函數(shù)f(x)在(
1
e
,+∞)
上遞增,f'(x)<0有 0<x<
1
e

∴函數(shù)f(x)在(0,
1
e
)
上遞減,
∴f(x)在x=
1
e
處取得極小值,極小值為f(
1
e
)=-
1
e

(2)∵2f(x)≥-x2+mx-3
即mx≤2x•lnx+x2+3,又x>0,
m≤
2x•lnx+x2+3
x
,
h(x)=
2x•lnx+x2+3
x
,
h′(x)=
(2x•lnx+x2+3)′•x-(2x•lnx+x2+3)•x′
x2
=
2x+x2-3
x2

令h'(x)=0,解得x=1或x=-3(舍)
當(dāng)x∈(0,1)時(shí),h'(x)<0,函數(shù)h(x)在(0,1)上遞減
當(dāng)x∈(1,+∞)時(shí),h'(x)>0,函數(shù)h(x)在(1,+∞)上遞增,
∴h(x)min=h(1)=4.
∴a≤4,
即m的最大值為4.
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性和極值的求解,利用函數(shù)單調(diào)性,極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值是解決不等式恒成立問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足:xf′(x)<f(x)且f(2)=0,則f(x)<0的解集為( 。
A、(0,2)
B、(0,2)∪(2,+∞)
C、(2,+∞)
D、ϕ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為遞增等差數(shù)列,Sn為其前n項(xiàng)和,滿足a1a3-a5=S10,S11=33.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)試求所有的正整數(shù)m,使
am+1am+3
am+2
為數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a2,a3分別為等差數(shù)列{bn}的第2項(xiàng)和第4項(xiàng),試求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,a=7,b=3,c=5.
(1)求△ABC中的最大角;
(2)求角C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2-a.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間.
(Ⅱ)對(duì)任意a≤-3,使得f(1)是函數(shù)f(x)在區(qū)間[1,b](b>1)上的最大值,試求最大的實(shí)數(shù)b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點(diǎn)F在PD上,且PE:ED=2:1
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正弦值;
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使得BF∥平面EAC?若存在,試求出PF的值:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)出定義域?yàn)閧x|-3≤x≤8,且x≠5},值域?yàn)閧y|-1≤y≤2,y≠0}的一個(gè)函數(shù)的圖象.如果平面直角坐標(biāo)系中點(diǎn)P(x,y)的坐標(biāo)滿足-3≤x≤8,-1≤y≤2,那么其中哪些點(diǎn)不能在圖象上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成的角為60°.
(1)求正四棱錐P-ABCD的表面積S和體積V.
(2)求二面角P-BC-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案