【題目】設(shè)函數(shù)滿足對任意,當(dāng)時總有成立,那么實數(shù)a的取值集合為__________.
【答案】
【解析】
由已知可得函數(shù)是(﹣∞,+∞)上的減函數(shù),則分段函數(shù)在每一段上的圖象都是下降的,且在分界點即x=1時,第一段函數(shù)的函數(shù)值應(yīng)大于等于第二段函數(shù)的函數(shù)值.由此不難判斷a的取值范圍.
∵對任意實數(shù)x1,x2,當(dāng)x1<x2時,總有f(x1)﹣f(x2)>0,
∴函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),
當(dāng)x≥1時,y=logax單調(diào)遞減,
∴0<a<1;
而當(dāng)x<1時,f(x)=(3a﹣1)x+4a單調(diào)遞減,
∴a;
又函數(shù)在其定義域內(nèi)單調(diào)遞減,
故當(dāng)x=1時,(3a﹣1)x+4a≥logax,得a,
綜上可知,a的取值范圍為[,)
故答案為:[,)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差為的等差數(shù)列,是公比為的等比數(shù)列.
(1)若,是否存在,有?請說明理由;
(2)若(、為常數(shù),且)對任意,有,試求出、滿足的充要條件;
(3)若,,試確定所有,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,其中.
(1)若依次成公差不為0的等差數(shù)列,求m;
(2)證明:“”是“恒成立”的充要條件;
(3)若,求證:存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)求出頻率分布表中實數(shù),的值;
(2)若從仿制的件工藝品重量范圍在的工藝品中隨機(jī)抽選件,求被抽選件工藝品重量均在范圍中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的是( )
A.命題“p且q”為真,則恰有一個為真命題
B.命題“已知,則“”是“”的充分不必要條件”
C.命題都有,則,使得
D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)當(dāng)時,若實數(shù)滿足,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測驗中,某班40名考生的成績滿分100分統(tǒng)計如圖所示.
(Ⅰ)估計這40名學(xué)生的測驗成績的中位數(shù)精確到0.1;
(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有95%的把握認(rèn)為數(shù)學(xué)測驗成績與性別有關(guān)?
合格 | 優(yōu)秀 | 合計 | |
男生 | 16 | ||
女生 | 4 | ||
合計 | 40 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com