已知函數(shù)f(x)=loga(x2+2ax+1)的值域?yàn)镽,則a的取值范圍是   
【答案】分析:本題是一個(gè)對數(shù)函數(shù)類型,由于函數(shù)f(x)的值域是R,所以真數(shù)t=x2+2ax+1的取值范圍應(yīng)該包含正實(shí)數(shù)集,利用二次函數(shù)值域的理論可得根的判別式大于或等于0,再結(jié)合對數(shù)的底數(shù)必須大于0且不等于1,可得實(shí)數(shù)a的取值范圍.
解答:解:∵函數(shù)f(x)的值域是R
∴設(shè)真數(shù)t=x2+2ax+1,為關(guān)于x的二次函數(shù),設(shè)其值域?yàn)镸
則必定有(0,+∞)⊆M
∵二次函數(shù)t=x2+2ax+1圖象是開口向上的拋物線
∴△=4a2-4≥0⇒a2≥1
又∵對數(shù)的底數(shù)為a,a>0且a≠1
∴a>1
故答案為:(1,+∞)
點(diǎn)評:本題的考點(diǎn)是對數(shù)型函數(shù)的值域與最值,考查對數(shù)型函數(shù)的值域?yàn)槿w實(shí)數(shù)的等價(jià)條件的理解,屬于中檔題.本題是一個(gè)易錯(cuò)題,應(yīng)依據(jù)定義理清轉(zhuǎn)化的依據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案